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 المخلص:

في هذا البحث نعرض طريقة لتعميم مصطلح المشتقة الجزئية في الفضاء المتري. هذا التعميم يمكننا من دراسة مسألة ديريشليت والعديد من  

 .المسائل الأخرى في الفضاءات المترية. كذلك عرضنا بعض الأمثلة التي يكون فيها هذا التعميم ممكن

النيوتونية، معادلة لابلاس،  المشتقة، المشتقة الضعيفة، الفضاء المتري، فضاءات سوبوليف، التدرج العلوي، الفضاءات    الكلمات المفتاحية:

 . مسألة ديرتشليت.

A B S T R A C T: 

          The We present the way of extending the notion partial derivative to metric measure space equipped 

with a doubling Borel measure supporting the p-Poincare inequality. This extension makes it possible to 

study the Dirichlet problem, and many other problems, in metric spaces.  We also present some examples 

where this extension is applied. 

Keywords: derivative, weak derivative, metric space, Sobolev spaces, upper gradient, Newtonian spaces, 

Laplace equation, Dirichlet problem. 

 

1. Introduction: 

Solving partial differential equations on metric spaces is an active area of research 

where the theory is currently under development.  

During the last two decades, people have shown the possibility to solve partial 

differential equations in general metric spaces by extending the concept of derivative.  The 

Sobolev spaces in 𝑅𝑛 are defined using the weak derivatives which are the first 

generalization of the partial derivatives. In metric measure spaces we do not have partial 

derivatives nor weak derivatives. Therefore, the concept of an upper gradient was introduced 

by Heinonen-Koskela [6] as a substitute of the usual gradient. This makes it possible to 

extend the Sobolev spaces to metric measure space which have been used to apply calculus 

of variations and study the p-Laplace equation as a minimizer of the p-Dirichlet integral. 

  For more details about upper gradients and Newtonian spaces see, e.g., 

Shanmugalingam [9], Björn-Björn [1] and Farnana [3]. For minimizers in metric spaces, see 

e.g., Shanmugalingam [10], Kinnunen-Shanmugalingam [7], Farnana [4,5]. 
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In this paper we let 1 < 𝑝 < ∞  and 𝑋 = (𝑋, 𝑑, 𝜇) be a complete metric space endowed with 

a metric 𝑑 and a positive complete Borel measure 𝜇 which is doubling, i.e., there exists a 

constant 𝐶 > 0 such that for all 𝐵 = 𝐵(𝑥, 𝑟) ≔ {𝑦 ∈ 𝑋: 𝑑(𝑥, 𝑦) < 𝑟} 

0 < 𝜇(2𝐵) ≤ 𝐶 𝜇(𝐵) < ∞,  

where 2𝐵 = 𝐵(𝑥, 2𝑟).   

This paper is organized as follows. In Section 2, we give some definitions with 

examples needed in the rest of the paper. In Section 3, we define the Dirichlet problem and 

show that it can be solved in the classical sense, where the solution is a 𝐶2-function. Another 

way of solving the Dirichlet problem is to minimize the variational integral, where the 

solution not necessarily twice differentiable. In Section 4, we show that, one can instead 

have a solution of the Dirichlet problem that has only a weak derivative. Moreover, in 

Section 5, for a metric measure space we use the upper gradient as substitute of the usual 

gradient. This makes it possible to define and solve the Dirichlet problem, based on the 

variational integral, in metric spaces.  Finally, in Section 6, we present some examples of 

metric spaces in which the extension of partial derivatives is possible.    

2. Preliminaries and definitions 

In this section we recall basic definitions needed in our study. 

Definition 2.1 (Metric space, metric)  

A metric space is a pair (𝑋, 𝑑), where 𝑋 is a set and 𝑑 is a metric on 𝑋 (or distance function 

on 𝑋), that is, a function defined on 𝑋 × 𝑋 such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 we have 

(M1) 𝑑 is real-valued, finite and nonnegative 

(M2)    𝑑(𝑥, 𝑦) = 0   if and only if  𝑥 = 𝑦 

(M3)   𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

(M4)    𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦 ) 

 Examples 2.2 

The following examples of metric spaces are from Kreyszig [8], the last three 

examples shows that the metric spaces are not necessarily spaces of numbers.  
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1. Real line 𝑹. This is the set of all real numbers, taken with the usual metric defined by 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|  

2. Euclidean plane 𝑹2. The metric space 𝑹2, called the Euclidean plane, is obtained if we 

take the set of ordered pairs of real numbers, written 𝑥 = (𝜉1, 𝜉2), 𝑦 = (𝜂1, 𝜂2) and the 

Euclidean metric defined by 

𝑑(𝑥, 𝑦) = √(𝜉1 − 𝜂1)2 + (𝜉2 − 𝜂2)2  

3. Euclidean space 𝑹𝑛. This space is obtained if we take the set of all ordered n-tuples of real 

numbers written as 

𝑥 = (𝜉1, 𝜉2, ⋯ , 𝜉𝑛),            𝑦 = (𝜂1, 𝜂1, ⋯ , 𝜂𝑛),  

and the Euclidian metric defined by 

𝑑(𝑥, 𝑦) = √(𝜉1 − 𝜂1)2 + ⋯ + (𝜉𝑛 − 𝜂𝑛)2  

4. Sequence space 𝒍∞. This space consists of all bounded sequences of complex numbers; 

that is, every element of  𝒍∞is a complex sequence  

𝑥 = (𝜉1, 𝜉2, ⋯ )     briefly      𝑥 = (𝜉𝑗)  

such that we have  |𝜉𝑗| ≤ 𝑐𝑥, where 𝑐𝑥 is a real number which may depend on 𝑥 but does not 

depend on 𝑗. We choose the metric defined by  

𝑑(𝑥, 𝑦) = sup
𝑗∈𝑵

|𝜉𝑗 − 𝜂𝑗|  

where 𝑦 = (𝜂𝑗) ∈ 𝒍∞  and 𝑵 = {1,2,3, ⋯ } 

5. Function space 𝐶[𝑎, 𝑏].  The set of all real-valued functions 𝑥, 𝑦, ⋯ which are functions of 

an independent variable 𝑡 and are defined and continuous on a given closed interval J =

[𝑎, 𝑏]. Choosing the metric defined by 

𝑑(𝑥, 𝑦) = max
𝑗∈𝐽

|𝑥(𝑡) − 𝑦(𝑡)|  
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Remark 2.3.  As we see in the last two examples the metric space in general is not 

necessarily a space of numbers therefore, it is not clear how to define the derivative of a 

function defined on a metric space.  

Definition 2.4. 

1. A function 𝑓: 𝑋 → 𝑹 is said to be in the space 𝐶𝑘(𝑋) if 𝑓 has a derivative of order 𝑘. 

2. Let Ω ⊂ 𝑹𝒏, the space  𝐶𝑐
∞(Ω) is defined to be the space of all functions  𝜙: Ω → 𝑹  such 

that 𝜙 is infinitely differentiable with compact support in Ω. We will sometimes call a 

function belonging to 𝐶𝑐
∞(Ω) a test function. 

Definition 2.5. We say that 𝑓: 𝑋 → �̅� belongs to the space 𝐿𝑝(𝑋) if  𝑓 is measurable and  

∫ |𝑓|𝑝
𝑋

𝑑𝜇 < ∞.  

The space 𝐿𝑝(𝑋) is equipped with norm 

∥ 𝑓 ∥𝐿𝑝(𝑋)= (∫ |𝑓|𝑝
𝑋

 𝑑𝜇) .
1

𝑝⁄   

A function belongs to the space 𝐿𝑝(𝑋) is often referred to as p-integrable on 𝑋.  

3. The Dirichlet problem 

The Laplace equation is defined by  

Δ𝑢 = ∇. ∇𝑢 = ∑ 𝑢𝑥𝑖𝑥𝑖
= 0𝑛

𝑖=1   

 The classical Dirichlet problem is to find a solution of the Laplace equation with given 

boundary values i.e., a function 𝑢  that satisfies  

{
Δ𝑢 = 0        in     Ω

       𝑢 = 𝑓        on    𝜕Ω.   
                                (1)  

 Definition 3.1 Let  𝒜 = {𝑤 ∈ 𝐶2(Ω̅): 𝑤 = 𝑓  on   ∂Ω}, we define the energy functional 

𝐼(𝑤) ≔ ∫ |∇𝑤|2 𝑑𝑥
Ω

, 𝑤 ∈ 𝒜. 

The following theorem shows that the Dirichlet problem can be characterized as a minimizer 

of an appropriate functional, it is from Evants [2]. 

Theorem 3.2 (Dirichlet's principle).  
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Assume that 𝑢 ∈ 𝐶2(Ω̅) such that  𝑢 solves Equation (1) (a solution of the Dirichlet 

problem). Then 𝐼(𝑢) = min
𝑤∈𝒜

𝐼(𝑤) i.e.,  

∫ |∇𝑢|2
Ω

𝑑𝑥 = min
𝑣∈𝒜

∫ |∇𝑣|2𝑑𝑥                        (2) 
Ω

  

Conversely, if 𝑢 ∈ 𝒜 satisfies Equation (2), then 𝑢 is a solution of the Dirichlet problem. 

In other words, if 𝑢 ∈ 𝒜, the partial differential equation ∆𝑢 = 0 is equivalent to the 

statement that 𝑢 minimizes energy integral (2). 

Proof 

Let 𝑣 ∈ 𝒜. Then Equation (1) implies that  

0 = ∫ ∆𝑢 (𝑢 − 𝑣)
Ω

𝑑𝑥.  

An integration by part yields  

0 = ∫ −∇𝑢. ∇(𝑢 − 𝑣)𝑑𝑥,
Ω

  

And there is no boundary term since 𝑢 − 𝑣 = 𝑓 − 𝑓 = 0  on ∂Ω. Hence, using the Cauchy-

Schwarz and Cauchy inequalities, we get 

  

∫ |∇𝑢|2
Ω

𝑑𝑥 = ∫ ∇𝑢. ∇𝑣
Ω

 𝑑𝑥 ≤ ∫
1

2
|∇𝑢|2 𝑑𝑥 + ∫

1

2
|∇𝑣|2 𝑑𝑥

ΩΩ
,  

which implies that 

∫ |∇𝑢|2
Ω

𝑑𝑥 ≤ ∫ |∇𝑣|2
Ω

𝑑𝑥,  

since 𝑣 ∈ 𝒜 was arbitrary, this implies that ∫ |∇𝑢|2
Ω

𝑑𝑥 = min
𝑣∈𝒜

∫ |∇𝑣|2𝑑𝑥 .
Ω

 

Conversely, suppose that Equation (2) holds. Let 𝜑 ∈ 𝐶𝑐
∞(Ω), then 𝑣 = 𝑢 + 𝑡𝜑 ∈ 𝒜  

By the minimizing property of 𝑢 we have 𝐼(𝑢) ≤ 𝐼(𝑣) = 𝐼(𝑢 + 𝑡𝜑) for all 𝑡 ∈ 𝑅. 

This means that ℎ(𝑡) ≔ 𝐼(𝑢 + 𝑡𝜑) has a global maximum at 𝑡 = 0 i.e., ℎ(0) ≤ ℎ(𝑡) for all 

𝑡 ∈ 𝑅. 
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It follows that ℎ′(0) = 0 provided that the derivative exists. But 

ℎ(𝑡) = ∫ |∇(𝑢 + 𝑡𝜑)|2
Ω

𝑑𝑥 = ∫ |∇𝑢 + 𝑡∇𝜑|2
Ω

𝑑𝑥  

= ∫ |∇𝑢|2 + 2𝑡 ∇𝑢 ∇𝜑 + 𝑡2|∇𝜑)|2
Ω

𝑑𝑥.  

Consequently 

0 = ℎ′(0) = ∫ ∇𝑢 ∇𝜑 𝑑𝑥 = ∫ −∆𝑢. 𝜑 𝑑𝑥.
ΩΩ

  

This identity holds for each 𝜑 ∈ 𝐶𝑐
∞(Ω) and so ∆𝑢 = 0 in Ω. 

4. The weak derivative and Sobolev spaces. 

Before turning to the weak derivative, we first mention that some functions do not have 

partial derivative, even continuous functions may not have partial derivatives. For this 

reason, we need to weaken the notion of partial derivatives.   

4.1 Motivation for the definition of weak derivatives. 

For 𝑢 ∈ 𝑪1(Ω) and if 𝜙 ∈ 𝐶𝑐
∞(Ω), we see from the integration by parts formula that 

∫ 𝑢(𝑥) 𝜙𝑥𝑖
(𝑥) 𝑑𝑥 = − ∫ 𝑢𝑥𝑖

(𝑥)𝜙(𝑥) 𝑑𝑥     (𝑖 = 1,2, … , 𝑛)
ΩΩ

.  

There are no boundary terms, since 𝜙 vanishes on 𝜕𝛺.  

Definition 4.1. Let Ω ⊂ 𝑹𝒏 and 𝑢 ∈ 𝐿1 (Ω). We say that 𝑣 is a weak derivative of  

  𝑢 in the direction 𝑥𝑖 if 

∫ 𝑢(𝑥) 𝜙𝑥𝑖
(𝑥) 𝑑𝑥 = − ∫ 𝑣(𝑥)𝜙(𝑥) 𝑑𝑥 

ΩΩ
  

for all test functions 𝜙 ∈ 𝐶𝑐
∞(Ω). We write 𝑣 = 𝐷𝑖𝑢. 

Lemma 4.2. (Uniqueness of weak derivatives) 

A weak partial derivative of 𝑢, if it exists, is uniquely defined up to a set of measure zero. 

Proof. 
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Let 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛) ∈ 𝑳1(Ω) and  �̃� = (�̃�1, �̃�2, … , �̃�𝑛) ∈ 𝑳𝟏(Ω)  be two weak derivatives 

of 𝑢, then for all 𝜙 ∈ 𝐶𝑐
∞(Ω) we have 

∫ 𝑢𝜙𝑥𝑖
𝑑𝑥

Ω
= − ∫ 𝑣𝑖𝜙 𝑑𝑥

Ω
= − ∫ �̃�𝑖Ω

𝜙 𝑑𝑥,    𝑖 = 1,2, … , 𝑛.  

Then 

∫ (𝑣𝑖 − �̃�𝑖)𝑑𝑥,    𝑖 = 1,2, … , 𝑛
Ω

  

for all  𝜙 ∈ 𝐶𝑐
∞(Ω). This means that  𝑣𝑖 − �̃�𝑖=0, a.e., 𝑖 = 1,2, … , 𝑛. Thus 𝑣 = �̃� a.e. 

4.2. Sobolev spaces 

The Sobolev space 𝑊1,2(Ω) consists of all functions 𝑢 ∈ 𝐿2(Ω) that have weak derivatives  

𝐷𝑖𝑢 ∈ 𝐿2(Ω) in all directions. It is equipped with the norm 

∥ 𝑢 ∥𝑊1,2(Ω)= (∫ |𝑢(𝑥)|2
Ω

+ ∑ |𝐷𝑖𝑢(𝑥)|2𝑑𝑥𝑛
𝑖=1 )

1
2⁄

  

Remark 4.3   The more general (non-linear) p-Laplace equation is defined by 

∇. (|∇𝑢|𝑝−2 ∇u) = 0, 1 < 𝑝 < ∞  and the corresponding Dirichlet problem is to find a 

function 𝑢 that satisfies the  

{
∇. (|∇𝑢|𝑝−2 ∇u) = 0        in     Ω

   𝑢 = 𝑓                              on    𝜕Ω.   
                                (3)  

which reduces to the classical Dirichlet problem for 𝑝 = 2. It can be shown, as in Theorem 

3.2, that a solution of Equation (3) is a minimizer of the energy integral 

∫ |∇𝑣(𝑥)|𝑝 𝑑𝑥,
Ω

  

When solving the Dirichlet problem for p-Laplace equation, 1 < 𝑝 < ∞,  one can look for a 

solution that has a weak derivative instead of the usual derivative i.e., a solution in the 

Sobolev space 𝑊1,𝑝(Ω), the space of all functions 𝑢 ∈ 𝐿𝑝(Ω) that have weak derivatives 

𝐷𝑖𝑢 ∈ 𝐿𝑝(Ω) in all directions. It is equipped with the norm 

∥ 𝑢 ∥𝑊1,𝑝(Ω)= (∫ |𝑢(𝑥)|𝑝
Ω

+ ∑ |𝐷𝑖𝑢(𝑥)|𝑝𝑑𝑥𝑛
𝑖=1 )

1
𝑝⁄

  

5.The Newtonian spaces (Sobolev spaces in metric spaces) 
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In a metric measure space 𝑋 we do not have partial derivatives nor weak derivatives but we 

have an upper gradient as a substitute of the usual gradient.  

Definition 5.1 

Let 𝑢: 𝑋 → �̅� be a function. A non-negative Borel function 𝑔: 𝑋 → [0, ∞] is said to be an 

upper gradient of 𝑢 if for all rectifiable curves 𝛾: [0, 𝑙𝛾] → 𝑋 parametrized by the arc length 

we have 

|𝑢(γ(0)) − 𝑢(𝛾(𝑙𝛾))| ≤ ∫ 𝑔 𝑑𝑠               (4)
𝛾

  

Whenever both 𝑢(γ(0)) and 𝑢(𝛾(𝑙𝛾)) are finite, and ∫ 𝑔 𝑑𝑠 = ∞
𝛾

 otherwise. If 𝑔 is a 

nonnegative measurable function on 𝑋 and if Equation (4) holds for 𝑝-almost every curve 

then 𝑔 is a 𝑝-weak upper gradient of 𝑢. 

By saying that Equation (4) holds for 𝑝-almost every curve we mean that it is satisfied expect 

for a curve family of zero 𝑝-modulus, see Definition 2.1 in Shanmugalingam [9] or 

Definition 2.4 in Farnana [3]. 

One can see from Equation (4) that if 𝑔 is an upper gradient of 𝑢, then every Borel function 

greater than 𝑔 will be another upper gradient of 𝑔, i.e., the upper gradient is not unique. 

However, if 𝑢 has an upper gradient in 𝐿𝑝(X), then it has a unique minimal 𝑝-weak upper 

gradient 𝑔𝑢 ∈ 𝐿𝑝(𝑋) such that 𝑔𝑢 ≤ 𝑔 for all 𝑝-weal upper gradients 𝑔 ∈ 𝐿𝑝(𝑋), see 

Corollary 3.7 in Shanmugalingam [10]. 

Remark 5.2. Notice that, in 𝑹𝑛, it follows from the fundamental theorem of calculus that, 

Equation (4) holds when 𝑔 is replaced by |∇𝑢| and in fact, |∇𝑢| is the smallest function that 

satisfies Equation (4), which means that 𝑔𝑢 = |∇𝑢|, see e.g., Proposition 4.3 in Farnana [3]. 

As we see, the minimal 𝑝-weak upper gradient is a replacement of the modulus of the usual 

gradient. This makes it possible to define Sobolev spaces in metric spaces called Newtonian 

spaces, see Shanmugalingam [9] and Definition 2.1 in Farnana [3].   

Definition 5.3 

Let 𝑢 ∈ 𝐿𝑝(𝑋), then we define 
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∥ 𝑢 ∥𝑁1,𝑝(𝑋)= (∫ |𝑢|𝑝𝑑𝜇 + ∫ 𝑔𝑢
𝑝 𝑑𝜇

𝑋𝑋
)

1
𝑝⁄

  

where 𝑔𝑢 is the minimal 𝑝-weak upper gradient of 𝑢. The Newtonian space is the quotient 

space  

𝑁1,𝑝(𝑋) = {𝑢: ∥ 𝑢 ∥𝑁1,𝑝(𝑋)< ∞} ~⁄ ,  

where 𝑢~𝑣 if and only if ∥ 𝑢 − 𝑣 ∥𝑁1,𝑝(𝑋)= 0. 

6. Some examples of metric spaces. 

The following examples of metric spaces satisfy the conditions: completeness, doubling and 

Poincare inequality, for more details see, Björn-Björn [1].  

1. The Euclidean spaces 𝑹𝑛. 

2. Weighted Sobolev spaces on 𝑹𝑛.  

3. Uniform domains and power weights. 

4. Graphs. 

5. Heisenberg groups. 

6. Riemannian manifolds with nonnegative curvature. 

7. Results and Analysis 

In this section we present and analyze the results of extending the partial differential 

equation to metric spaces. We first show that the weak partial derivative, in 𝑹𝑛, is the right 

extension of the usual derivative. In particular we show that, for differentiable functions the 

two concepts coincide. Moreover, for a differentiable function 𝑓, the minimal p-weak upper 

gradient is equal to the modulus of the usual gradient. This means that, when we are restricted 

to 𝑹𝒏 the Newtonian space 𝑁1,𝑝(𝑹𝑛) is equal to the Sobolev space 𝑊1,𝑝(𝑹𝑛). Furthermore, 

the extension of the derivative is unique. 

 References 

[1] Björn. A and Björn. J, Nonlinear Potential Theory on Metric Spaces, (EMS Tracts in 

Mathematics 17), Zürich, European Mathematical Society, 2011, 403p. 

[2] Evans. L. C, Partial Differential Equations, USA, American Math. Society, 1998, 662p. 



  

 (   2023) ديسمبر    1، المجلد  18العدد                                                                                                 284
 

    ســــــة طرابلـــــة التربيـــــة كليـــــمجل

Journal of the Faculty of Education Tripoli 

[3] Farnana. Z, Sobolev spaces in metric spaces, The Libyan Journal of Science, 2021, 24,79-

88. 

[4] Farnana. Z, Boundary regularity and some convergence results for p-harmonic functions in 

metric spaces, Aljameai, 2021, 34, 37-49.  

[5] Farnana. Z, p-harmonic functions on metric spaces, The Libyan Journal of Science, 2022, 

25, 29-30. 

[6] Heinonen. J and Koskela. P. (1998). Quasiconformal maps in metric spaces with controlled                     

geometry, Acta Math, 181,1-61. 

[7] Kinnunen. J and Shanmugalingam. N, Regularity of quasi- minimizers on metric spaces, 

Manuscripta Math., 105, 2001, 401–423. 

[8] Kreyszig. E, Introductory Functional Analysis with Applications, Canda, Library of 

Cataloging in Publication, 1989. 

[9] Shanmugalingam. N, Newtonian spaces: An extension of Sobolev spaces to metric measure 

spaces, Ref. Mat. Iberoamericana, 16, 2000, 243-279. 

[10]  Shanmugalingam. N, Harmonic functions on metric spaces, Illinois Math. J., 45, 2001, 

1021-1050. 


