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Water Infiltration into Uniform and Stratified Soils

I. Review and use of an approximate theory'

MOHAMED ASSEED AND D. SWARTZENDRUBER*

ABSTRACT

The equations of the approximate infiltration theory of Green and Ampt are much
simpler than the mathematical forms of the diffusivity-conductivity theory of soil-water
movement, and also involve parameters of characterization that are easier to measure
experimentally. For cumulative water infiltrated into uniform soil as a function of time,
these parameters are: theinitial water content of the soil, the constant mean water content
behind the wet front, asoil constantakin tothe hydraulic conductivity of nearly saturated
soil, and an equivalent constant head of water arising from the capillary properties of
the soil. For fitting of the Green and Ampt equation to experimental infiltration data, a
least-squares approach was developed, and was found to work very satisfactorily for
measurements made on sand-silt mixtures.

The approximate theory was applied to infiltration into stratified soils, thus involving
the parameters of characterization of each stratum. Analysis was carried out for two and
three strata, and can be continued for as many strata as desired. The resulting equations,
however, become increasingly complicated, especially for the larger values of time at
which the wet front has advanced into successively deeper strata.

INTRODUCTION

Theoretical analyses of infiltration of water into soil have generally been made for
physical conditions represented in terms of a vertical column of unsaturated porous
material to which water is applied at the top, often by ponding. In principle, an exact
mathematical solution for water inflow into such a column is obtainable for a great
variety of conditions, in terms of the diffusivity and conductivity functions of the porous
material. Hence, the prediction of infiltration, as well as of other liquid-flow soil-water
processes, becomes possible if the diffusivity and conductivity functions can be mea-
sured. Utilization of this so-called exact approach, however, as done by Green, Hanks,
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and Larson (8), is greatly complicated by the experimental difficulties attendant to
the measurement of the diffusivity and conductivity functions. Steady-state flow
methods for determining the conductivity function are time consuming. Furthermore,
the pressure-plate outflow (or inflow) method for measuring both the diffusivity and
conductivity functions is not only lengthy, but the results are subject to 7- to 10-fold
variations in precision (1, 9).

In view of these difficulties, a somewhat different approach would appear to be
justified. Specifically, it would seem worthwhile to investigate the validity and utility
of infiltration equations of simpler mathematical form, involving parameters of char-
acterization that are easier to measure experimentally. Admittedly, such an attack
would be less capable of rigorous physical interpretation, and the soil-characterizing
parameters therefrom might be of little if any utility for describing other types of soil-
water transfer. But, if a workable and self-consistent approximate theory and method
could be put together successfully just for the infiltration process alone, the result
would still be of considerable merit and utility. In the present study, attention is directed
to an approximate theory of water infiltration in which the parameters appear to be
much simpler to measure.

THEORETICAL CONSIDERATIONS

Uniform Systems

One-dimensional downward infiltration is diagrammed in Figure 1A. To the infinitely
deep uniform porous material of initial constant volumetric water content ¢, the
constant depth H of ponded water is applied at time t = 0. If 6, is on the order of air
dryness, a distinct visual wet front will be present, the depth of which is designated z,
and which increases with time t > 0. The first analysis of this flow problem was given
by Green and Ampt (7), considering the soil to behave in an idealized fashion which
implied complete water saturation behind the wet front, so that the mean volumetric
water content @ behind the wet front (for all z) would equal the total porosity. This as-
sumption was first shown to be untenable by Kirkham and Feng (10). Philip (12) in
effect relaxed the requirement of total saturation. He assumed for all z that @ was
constant, but left open the possibility of it being less than the total porosity. But the
infiltration equation he derived was still in essence the same functional relation as that
of Green and Ampt. We shall develop this equation in brief fashion here, but the basic
limitations and approximations will remain as in the result of Philip (12). Childs (3, pp.
107—-108) was the first to point out clearly that Green and Ampt’s approach need not
necessarily be restricted to a capillary-tube model.

The Darcy equation can be written as

v = dy/dt = Ki (n

where v is the flux of water transmitted, y is the volume of water transmitted per unit
cross sectional area of soil column, t is the time, K is the hydraulic conductivity, and i
is the total hydraulic gradient. It is granted that certain questions about the ultimate
validity of the Darcy equation are as yet unresolved (19). But, since equation (1) will here
be used in a development which from the outset is admitted to be approximate, the exist-
ence of some possible approximate character in the basic equation is not considered for-
biddingly serious, especially since the final results would need to be assessed experi-
mentally.

To obtain an expression for i of equation (1) for the column in Figure 1A, we envision
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Fig. 1. Diagrams of water infiltration into columns of porous media, (A) a uniform column,
and (B) a stratified column.

a fictitious tensiometer to be inserted at or just slightly behind the wet front and to be
capable of moving along with it. The water level in this fictitious moving tensiometer is
considered to stand at the constant distance P below the wet front. Philip (12) terms
—P as ‘the capillary potential of the wetting front.” Taking the top of the column as an
arbitrary datum plane for hydraulic head, the total hydraulic head h, at the wetting
front becomes hy; = —(P + z) while that at the inlet end (top) of the column becomes
hi;ee = H. Forming the total hydraulic head differences yields hjy — hyy=H + P +
z. We express gradient i as (hjyq — hys)/z = (H + P + z)/z. We now put this result into
equation (1), but at the same time replace K by another constant C to allow for any
distinction from the Darcian K; the result becomes

dy/dt = C(P + H + z)/z (2)

Since C fills an analogous role to K and has the same units, it may at this stage be
of some interest to speculate whether C might ultimately be interpretable as the
value of K corresponding to the water content 8. This is somewhat akin to van Duin’s
(20) suggestion that throughout the transmission zone the hydraulic conductivity is
nearly constant and i8 associated with a water content of about 80%, pore-space satura-
tion.

Making use of Philip’s (12) assumption of a constant & behind the wet front, we can
write

(6 - 6p)z=y =Mz 3)
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where # — 6, = M is introduced merely as an economy of symbols. Solving equation (3)
for z and putting the result into equation (2), separating variables, integrating, and
using the conditiony = 0 att = 0, yields

(y/a) — In (1 + y/a) = Ct/a (4)
as the form of the Green and Ampt equation, where
a=MH +P)=(@ - 6)(H + P) (5)

Although the derivation just given does not impart rigor to equation (4), Philip (13)
has considered an alternative derivation based upon diffusivity-conductivity ap-
proaches, and reports that the form of equation (4) will result from assuming that the
diffusivity is given by the Dirac delta function. Physically, however, this implies a
porous medium of coarse texture and low initial water content, and, if these special
conditions are not met, the validity of equation (4) is still left approximate. In spite of
this, Philip (13,14,15) has reported fairly good success in comparing equation (4) with
the general results of his more exact analysis, although Childs (3) has criticized some
of the comparisons as not being particularly meaningful. Nevertheless, both Gardner
(5) and Childs (3) have encouraged a greater use of the Green and Ampt equation to
characterize infiltration properties.

If characterizing infiltration were the only goal, then it would not particularly matter
whether C and P were precisely interpretable in terms of the commonly accepted basic
soil-physics concepts of unsaturated conductivity and soil-water suction, as long as
both C and P were dependable and self-consistent characterizers of the infiltration
process. It would be particularly convenient if both parameters were determined only
by the soil material and @. This would seem a reasonable possibility if, in accord with
van Duin’s (20) suggestion, C were closely associated with the hydraulic conductivity
of the transmission zone, and if P were essentially the hydraulic head loss through this
zone. As pointed out by Swartzendruber (18), Mein and Larson (11) have in effect taken
P as the negative of Bouwer’s (2) critical pressure head, a quantity that is independent
of the initial water content 6. It can also be argued, however, that P should be related
in some inverse fashion to the mean radius of curvature of the air-water interface in the
soil and this implies P to decrease as 0 increases. Resort to experiment would seem to be
the most meaningful way of resolving the matter.

An infiltration equation has been given by Philip (13) in the form

y = St'2 + Gt (6)

where S and G are constants for flooding applications of water and a given constant
initial water content. Strictly speaking, the assumptions giving rise to equation (6) do not
allow time t to increase without limit (13). Nevertheless, equations (4) and (6) can be
matched in the limits t —+ 0 and t - cc by taking S = (2aG)"2and G = C. Using such
matching conditions, Swartzendruber and Youngs (19) compared equations (4) and
(6) over the complete time range, and found the maximum relative difference between
them to be only 15.1%. This relatively small difference suggests that both equations
describe infiltration in about the same way. Nevertheless, the Green and Ampt ap-
proach would seem to possess some advantages for our present purposes. Parameter a,
for example, depends on 6, in a much less complicated fashion than does S. Further-
more, the considerations which produce equation (6) are not simply extendable to strati-
fied porous media, whereas the approximate reasoning used to derive equation (4) can
also be applied straightforwardly to stratified media, a matter to which we now turn.
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Stratified Systems

Consider the system of Figure 1B, where a stratum of infiltration properties C,
P,, @,, and 0;,, and of length L, is underlain by an infinitely deep stratum of infiltration
properties C,, P,, 85, and 6y,. For z < L,, that is, before the wet front reaches the
junction between the two strata, the infiltration behavior is simply that of the Green and
Ampt expression [cqualion (4) ], namely

(yfal) —_ ln(l + ylal) = C|Ual (7)

wherea, = M;(H + P,) = (@ — 6y,)(H + P,). When the wet front penetrates into the
lower stratum, for z > L, as actually depicted in Figure 1B, a somewhat different
expression eventually will emerge. The equivalent of equation (2) becomes

dy/dt = C.(H + P, + z)/z (8)

where C. is analogous to the equivalent conductivity of the two regions of C, and
C, spanned by the wet-front depth z. C, is thus expressed (16) as C, = z/ [LI/C| +
(z- L)/ Cz]. Combining this with equation (8) and rearranging yields

dy/dt = C,Cy(H + P, + z)/[L\(C; — C)) + Cyz] )

For later simplification, it is convenient to reckon y and t of equation (9) from the point
at which the wet front strikes th junction of the two strata (z = L)), using y; and t,
for this purpose but remembering that they are still variables. The counterpart of equa-
tion (3) is then written

Y2 = Myz - L)) (10)

Setting y = y, and t = t, in equation (9) and combining with equation (10) to eliminate
z will result in a differential equation in which the variables can be separated and the
differentials integrated. Using y, = 0 at t; = 0 in the integrated result enables the final
result to be written

(y2/b) — (1 — ¢/b) In (1 + ya/b) = Csty/b (1)
where
b=MyH +P; +L)) =a, + M,L, (12)
and
¢ = LM,C,/C, (13)

Note the similarity of equation (11) with equation (4). In particular, if L, = 0 then
Figure 1B becomes a uniform system for the subscript 2 material, whereupon ¢ = 0,
b = My(H + P;) = a,, and, as it should, equation (11) reduces to the Green and
Ampt equation for the subscript 2 material. Equation (11) was first presented by van
Duin (20), but without details of derivation. Childs (3, 4) and Childs and Bybordi (5)
have also applied the Green and Ampt approach to stratified porous media, but without
reference to van Duin (20).

To construct a complete curve of water infiltrated versus time for a column with
L, > 0, equation (7) is used until the wet front reaches the stratum junction. There-
upon, let y and t from equation (7) be designated as y, and tg, respectively. As the
wet front penetrates into the lower stratum, equation (11) becomes applicable, and
the overall accumulative curve, reckoned from the same origin as in equation (7),
becomes yy + y, versus ty + ts.
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The foregoing general approach can readily be extended to as many strata as desired,
and the basic form of the resulting equation remains that of equation (11). Consider,
for example, that the L, stratum of Figure 1B be underlain by a stratum of properties
C,, P,, and M,, and of length L,, and that this in turn be underlain by an infinitely
deep stratum of properties C;, P;, and M;. Then, for the wet front in the subscript 3
layer, the resulting equation will take the form of equation (11), but with the b of it
and equation (12) replaced by M3(H + P; + L, + L,), and the ¢ of equations (11) and
(13) replaced by My(L; + L,)C;/C,j5, where C,;; = (L, + Ly)/(L,/C, + L,/C,)is
the equivalent C for the two top strata. Also, C,, and y,, and t, of equation (11) are
replaced by Cj, y;, and t;, respectively, where y; and t; are reckoned from the stage at
which the wet front strikes the junction between the subscript 2 and subscript 3 strata
(Z = L| + Ly_)

FITTING OF CONSTANTS FOR UNIFORM SYSTEMS

The fitting of equation (4) to data of cumulative infiltration y versus time t is com-
plicated by the presence of the constant a in the logarithmic term. Experimental data,
however, can be plotted on translucent log-log graph paper used as an overlay, which
is then matched by horizontal and vertical translation to an underlay plot of equation
(4) prepared on the same kind of log-log graph paper. This method, however, is work-
able only if the experimental data follow the theoretical curve very precisely; otherwise,
subjective errors of fitting by eye are encountered. Because of this weakness, the log-
log overlay-underlay graphical technique was eventually discarded, even though a
number of attempts had been made to use it.

To fit equation (4) by least squares, the sum of squares of the t deviations is minimized,
since t is given as an explicit function of y rather than vice versa. The sum of squares
thus formulated is

3 - = _zp;l [t; - 3/C) + @C) In (1 + y;/a)? (14)

j=1 i=

where {; is simply the t of equation (4) with a subscript j, and p is the total number
of experimental pairs of y; and t;. The sum in equation (14) is minimized in the con-
ventional way by taking partial derivatives with respect to C and a and setting equal
to zero. Doing this for C and solving for C yields

3 a[(/2) — In (1 + yy/a) ]

c== (15)
-z. ti[(vi/a) — In (1 + y;/a)]
J=

Taking the partial derivative of equation (14) with respect to a and setting equal to
zero yields

P
3 [Ct-y;+aln( +y/a)][In(l +y/a) - yj/(y; +a)] =T =0 (16)
j=1
where T simply denotes the summation expression.
Equation (16) with T = 0 cannot be solved explicitly for a, since the logarithmic
term contains a. Note, however, that for a given set of p pairs of y;and t;, C of equations
(15) and (16) becomes a function only of a, so that T defined by the first equality of
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equations (16) also becomes a function only of a. Hence, in equation (15) and the first
of equations (16), trial values of a can be used until one is found that makes T = 0.
This is the least-squares value of a, and its substitution into equation (15) yields the
least-squares value of C. The computations just described are much too lengthy fora
desk calculator, but can be handled with ease by electronic computer. In programming
the calculations, we have found Newton’s method of iterative approximation to be
workable and effective.

In a subsequent paper, experimental results will be considered and analyzed in detail,
including, for uniform sand-silt mixtures, twenty sets of data that were fitted to equation
(4) by the least-squares approach just outlined. As a measure of goodness of fit, a
mean-square deviation was calculated on the basis of the left-hand side of equation (14)
as

P .
Zl (t, — )%p

j=

Out of the twenty sets of data, the set with the largest value of this mean-square
deviation (18.31 min?), and hence the poorest fit, is shown graphically in Fig. 2. Even
for this case of poorest fit, it is seen that the curve of equation (4) passes very acceptably
through the data points. It is thus concluded that the Green and Ampt expression
[equation (4)] describes the infiltration data very well, and that the least-squares fitting
process represented by equations (14) through (16) is satisfactory.

T T T T T T T

12+ E
=
o | o Experimental values J
=
]

8t .
2
x
ol | A
TS
=z
@ 4 y/a =In(l+y/a) = Ct/a .
Q where: a =952 cm
= C = 0.00559 cm/min g

0 | 1 1 1 1 n

0 200 400 600 800

TIME t, MIN

Fig. 2. Tllustration of the least-squares fit of the Green and Ampt equation to data obtained
for cumulative water infiltration into a uniform column of 25% silt and 75% fine sand, for a
mean-square deviation of 18.31 minZ
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