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Abstract 

 
In this research we consider a system of one particle moving under the influence of 

short range potential. The applicability of solving Schrödinger equation by the 

method of diffusion due to Grimm-Storer approximation for a short range potential 

is investigated. Schrödinger equation can be solved to get the ground state and first 

excited state wave function and their Eigenvalues using other methods, like the finite 

difference method and in some cases the analytic solution if available. Both methods 

were used to compare solutions to that derived by the diffusion approximation 

method. In this study an exponential and a square well potential are taken as 

examples. 

 

 المستخلص

البحث تم افتراض نظام من جسم واحد يتحرك تحت تأثير جهد قصير المدى وتحري مدى  افي هذ
دى. ية المقدمة من جرم وستورر  للجهد قصير المقابلية حل معادلة شرودنجر بطريقة الانتشار التقريب

يمكن حل معادلة شرودنجر لإيجاد معادلة الموجة للحالة الارضية وحالة الاثارة الاولى وكذلك القيم 
الذاتية التابعة لها باستخدام طرق اخرى مثل طريقة الفروق المحدودة وفي بعض الحالات طريقة الحل 

ن استخدمت لمقارنة الحلول المتحصل عليها باستخدام طريقة الانتشار التحليلي التام, كلتا الطريقتي
 تم اخذ الجهد الاسي وبئر الجهد كأمثلة تطبيقية. بحثال االتقريبية. في هذ
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Introduction 

 

The diffusion approximation method is based on numerical solution of the 

diffusion like equation: 

 

�̂� Ѱ = - 
𝜕Ѱ

𝜕𝛽
                                      (1) 

 

Where �̂� is the Hamiltonian for the system of one particle satisfying certain 

boundary condition, and 𝛽 is a real parameter . It is a numerical method that was 

established by Grimm and Storer [1], and it involves the use of Green's functions 

and converts Schrödinger equation into an integral equation. The integral equation 

is then solved iteratively for small 𝛽 and by expanding the initial guess function 

Ѱ0(𝑥) in a complete set of Eigenfunctions of the Hamiltonian. This iterative 

procedure converges the solution which approaches the ground state or the first 

excited state in the special case of even potential where the wave functions can be 

classified into even and odd functions. The whole process is based on this expansion 

of the complete set of the wave functions associated with the Hamiltonian. For short 

range potentials only few bound states can exist so the notion of expanding of the 

initial guess wave function is not appropriate because of the lack of the complete 

set of Eigenfunctions. This raises the question, is this method applicable to short 

range potential or not. It was demonstrated, here, that it is possible to get the ground 

state and the first excited state wave function for the short range potential which 

does not have a complete set of Eigenfunctions. 

 

General Theory 
 

    The solution to the operator equation (1) can be found in terms of the Green's 

function as: 

 

Ѱ(𝑥, 𝛽) =  ∫ 𝐺(𝑥, 𝑥0, 𝛽)Ѱ0(𝑥0)𝑑𝑥0
∞

−∞
           (2) 

 

 

Where  𝐺(𝑥, 𝑥0, 𝛽) = < 𝑥|𝑒−𝛽�̂�|𝑥0 >  is the Green's function of equation (1)  for 

any 𝛽 , with the initial condition  𝐺(𝑥, 𝑥0, 0) =  𝛿(𝑥 − 𝑥0)  [2]. And 

 

Ѱ0(𝑥) =  Ѱ(𝑥, 𝛽 = 0)  ≡ an initial guess. 
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The operator �̂� can be written into the form  �̂� = �̂� 0 + �̂�(𝑥) , so equation (2) can 

be transformed into an iterative form [3]: 

 

Ѱ(𝑥, 𝑛𝛽) = 𝑒−
𝛽

2
𝑉(𝑥) 

∫ [𝐺0(𝑥, 𝑥0, 𝛽) ± 𝐺0(−𝑥, 𝑥0, 𝛽)]
∞

0
𝑒−

𝛽

2
𝑉(𝑥0) Ѱ(𝑥0, (𝑛 −

1)𝛽)𝑑𝑥0                (3) 

Where  𝐺0(𝑥, 𝑥0, 𝛽) = < 𝑥|𝑒−𝛽𝐻0̂|𝑥0 >=
1

√4𝜋𝛽
𝑒

−
(𝑥−𝑥0)2

4𝛽   is the Green's function of 

the equation  𝐻0̂𝐺0 = −
𝜕𝐺0

𝜕𝛽
  and  H0̂ = −

𝑑2

𝑑𝑥2
 . 

For even potentials 𝑉(𝑥) the + sign is used for the even wave function Ѱe(𝑥)  which 

corresponds to the ground state wave function, and the – sign is used for the odd 

wave function Ѱo(𝑥)  which corresponds to the first excited state wave function. 

Convergence is expected for large iterative steps n. 

 

Applications 

 

A - Short Range Exponential Potential. 

     This potential is a good example to test the applicability of the diffusion method 

to short range smooth potential given by: 

  

    𝑉(𝑥) = −𝑉0𝑒−
|𝑥|

𝑎                     − ∞ < 𝑥 < ∞         (4) 

 

In Fig. 1 (a,b) we show the ground state and the first excited state wave function  

respectively calculated using finite difference method, diffusion method, and the 

analytic solution with ט
0

=
2𝑚𝑎2

ħ2
𝑉0 = 100 which are in good agreement. The initial 

guess wave function was a small square well. 

The red line is for the wave function calculated using finite difference method, 

while the black line is for the wave function calculated using this diffusion 

approximate method, and the blue line is for the wave function calculated using the 

analytic method. 

In tables 1(a,b) we show the numerically calculated Eigenvalues for the ground 

state and the first excited state respectively with different ט
0

 . The first column 

shows  the  results of the  finite  difference  method  calculated  numerically  when  
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Ѱ(𝑥) calculated at mesh point 𝑥𝑛 = ∆𝑛, 𝑛 ≥ 0  [4,5], where Ѱ(𝑥𝑛) = Ѱ𝑛 and ∆ is 

the distance between adjacent points 𝑥𝑛+1 − 𝑥𝑛 = ∆. 

 

 

 
Figure 1. a) The normalized ground state wave function and  b) first excited wave function 

of short range exponential potential. 

 

 

Ѱ𝑛+1 = [2 + ט)2∆
0

𝑒−∆𝑛 − Ԑ)]Ѱ𝑛 − Ѱ𝑛−1          (5) 

 

For ט
0

=
2𝑚𝑎2

ħ2
𝑉0   and  Ԑ =

2𝑚𝑎2

ħ2
|𝐸|. 

For ground state wave function we choose the initial values of the wave function 

as: 

Ѱ(𝑥0) = Ѱ0 = 1.0    and      Ѱ(∆) = Ѱ1 = 1.0 + (
Ԑ−0ט

2
) ∆2                   (6) 

 

And for the first excited state wave function we choose initial values of the wave 

function as: 

Ѱ(𝑥0) = Ѱ0 = 0.0    and      Ѱ(∆) = Ѱ1 = 𝑐                   (7) 

Where 𝑐 is a small constant. 
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The second column shows the results using diffusion approximate method with 

𝛽 = 0.001 and ∆= 0.001 where ∆  is the mesh size of the coordinate 𝑥 ie 𝑥𝑛 = 𝑛∆ . 
For the diffusion approximate method the initial guess wave function is compact in 

small range near a square well, so the iterative procedure can be more efficient in 

reducing the wave function to the ground state or to the first excited state. The 

distance is measured in units of a, and the units of energy is 
ħ2

2𝑚𝑎2
 . In these units the 

Hamiltonian is  H0̂ = −
d2

dx2 and 𝑉(𝑥) = ט−
0

𝑒−𝑥 where ט
0

=
2𝑚𝑎2

ħ2 𝑉0. 

The energy Eigenvalue Ԑ for ground state is calculated by means of numerical 

evaluation of the expectation value of the Hamiltonian for the normalized wave 

function using Simpson rule: 

       

Ԑ = ∫ Ѱ∗(𝑥)
∞

−∞
�̂�Ѱ(𝑥)𝑑𝑥           (8) 

 

While the energy Eigenvalue for the first excited state is calculated by means of 

numerical evaluation of the norm of the last convergent wave function by the 

formula [3]: 

 

   Ԑ = −
1

2𝛽
𝑙𝑛 ∫ Ѱ∗(𝑥, 𝑛𝛽)Ѱ(𝑥, 𝑛𝛽)𝑑𝑥  

∞

−∞
        (9) 

 

The last column shows the exact calculated energy Eigenvalue using an analytic 

method by converting Schrödinger equation of short range potential to Bessel 

function of order 2√Ԑ   by the transformation 𝑧 = 𝑒−𝑥 2𝑎⁄  where Ԑ  is the energy 

Eigenvalue written as [6,7]: 

 

𝑧2 𝑑2Ѱ

𝑑𝑧2
+ 𝑧

𝑑Ѱ

𝑑𝑧
+ ט4)

0
𝑧2 − 4Ԑ)Ѱ = 0           (10) 

 

Where ט
0

=
2𝑚𝑎2

ħ2 𝑉0      and   Ԑ =
2𝑚𝑎2

ħ2
|𝐸| 

For 𝑥 ≥ 0   then   0 < 𝑧 ≤ 1 
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equation (10) then has the solution 𝐽2√Ԑ(2√ט
0

 z). The even parity solution would 

satisfy 𝐽′
2√Ԑ ט√2)

0
) = 0 where  𝐽′ is defined as 𝐽′ =

𝑑𝐽

𝑑𝑧
  , and the odd parity 

solution satisfies 𝐽2√Ԑ ט√2)
0

) = 0 . Both conditions are calculated numerically to 

obtain the Eigenenergies. 
 

Table 1a. The ground state energy eigenvalues for the short range exponential potential 

using different methods. 

ט
0
 

 

Finite difference 

method 

Diffusion 

approximation  method 

Exact 

solution 

100 

200 

-79.7614 

-167.324 

-79.7612 

-167.324 

-79.7567 

-167.316 

 

Table 1b. The first excited state energy eigenvalues for the short range exponential potential 

using different methods. 

ט
0
 

 

Finite difference 

method 

Diffusion 

approximation  method 

Exact 

solution 

100                          

200                          

-65.2907  

-128.465                                                     

-56.2887   

-128.466                                               

-56.2882   

-128.458                  

 

  

 

B - Square Well Potential. 

 This potential is another good example to test the applicability of the diffusion 

method to short range but the discontinuous potential is given by: 

 

 

 

 

 

 

 

Where Schrödinger equation is put into the form: 
 

𝑉(𝑥) = 

|𝑥| ≤ 𝑎 

0 

ט -
0
 

|𝑥| > 𝑎 
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𝑑2Ѱ

𝑑𝑥2
+ (Ԑ − 𝑉(𝑥))Ѱ = 0 

In Fig. 2(a) we show the ground state wave function for ט
0

= 100 , 𝑎 = 0.1 

calculated using diffusion approximate method and exact analytic solution. 

In Fig. 2(b) we show the first excited state wave function for ט
0

= 100 , 𝑎 = 0.3 

calculated using diffusion approximate method and exact analytic solution. 

The wave functions calculated using the diffusion approximte method have a 

discontinuity at 𝑥 = 𝑎 which caused difficulties in calculating the ground state 

energy Eigenvalue. 

The black line is for the wave function calculated using diffusion approximate 

method, while the blue line is for the wave function calculated using the analytic 

method. 

In table 2(a,b) we show the numerically calculated Eigenvalues for the ground 

state and the first excited state respectively with different ט
0
 and 𝑎. 

The first column shows the results using finite difference method calculated 

numerically as before with: 

 

Ѱ𝑛+1 = [2 + ∆2(Ԑ − ט
0

)]Ѱ𝑛 − Ѱ𝑛−1          (11) 

 

Figure 2. a) The normalized ground state wave function and b) first excited wave 

function of square well potential. 
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We choose the initial boundaries for the ground state and first excited state in the 

form given by equations (6) and (7) respectively. 

The second column shows the results using diffusion approximate method with  

𝛽 = 0.0003 , ∆= 0.001 for the ground state, and 𝛽 = 0.0001 , ∆= 0.001 for the 

first excited state. The energy Eigenvalues are calculated by evaluating the 

expectation value of the Hamiltonian for the normalized wave function as [6]: 

 

Ԑ1=∫ Ѱ∗(𝑥)
∞

−∞
�̂�Ѱ(𝑥)𝑑𝑥                                        (12) 

And this can be transformed by partial integration into  

 

Ԑ2 = ∫ ([Ѱ′(𝑥)]2 + 𝑉(𝑥)[Ѱ(𝑥)]2)𝑑𝑥    
∞

−∞
                    (13) 

 

 

Table 2a. The ground state energy eigenvalues for the square well potential using different 

methods. 

 

ט
0
 

 

 

𝑎 

 

 

Finite 

difference 

method 

Diffusion approximate  method  

Exact 

solution 

 

Ԑ1 

 

       Ԑ2 

 

Ԑ2' 

100 

200 

0.1 

0.2 

-45.3756 

-166.852 

-55.7510 

-193.980 

-43.8804 

-165.268 

-45.3751 

-166.851 

-45.3753 

-166.851 

 

 

Table 2b. The first excited state energy eigenvalues for the square well  potential using 

different methods. 

 

ט
0
 

 

 

𝑎 

 

 

Finite 

difference 

method 

Diffusion approximate  method  

Exact 

solution 

 

Ԑ1 

 

       Ԑ2 

 

Ԑ2' 

100 

200 

0.3 

0.3 

-42.2970 

-130.062 

-82.3097 

-219.871 

-41.6445 

-129.672 

-42.2970 

-130.061 

-42.2976 

-130.062 
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These two equations didn't result in acceptable results because of the 

discontinuity of the wave function at = 𝑎 , so we can get acceptable results for 

Ԑ′2 by removing the peak in the square differential wave function as shown in Fig 

3(b). 

The last column shows the exact energy Eigenvalues using the analytic method. 

 
Figure 3. a) The square derivative of wave function and b) singularity removed. 

 

Conclusion 
 

  We have used the diffusion approximate method developed by Grimm and Storer 

to solve the Schrödinger equation to get the ground state and the first excited state 

for an even short range potential. It was demonstrated, here,  that this method is  

applicable for solving the Schrödinger equation for short range potentials by an 

appropriate initial guess wave function in a small range near the origin. 

Discontinuous potentials manifest themselves in the final wave function as the 

method cannot rid of the discontinuity. Extra care should be taken when evaluating 

the energy Eigenvalues in this case. 
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