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Abstract

In this research we consider a system of one particle moving under the influence of
short range potential. The applicability of solving Schrédinger equation by the
method of diffusion due to Grimm-Storer approximation for a short range potential
is investigated. Schrédinger equation can be solved to get the ground state and first
excited state wave function and their Eigenvalues using other methods, like the finite
difference method and in some cases the analytic solution if available. Both methods
were used to compare solutions to that derived by the diffusion approximation
method. In this study an exponential and a square well potential are taken as
examples.
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Introduction

The diffusion approximation method is based on numerical solution of the
diffusion like equation:

qy=.2
HY=-2 (1)

Where H is the Hamiltonian for the system of one particle satisfying certain
boundary condition, and S is a real parameter . It is a numerical method that was
established by Grimm and Storer [1], and it involves the use of Green's functions
and converts Schrodinger equation into an integral equation. The integral equation
is then solved iteratively for small g and by expanding the initial guess function
W,(x) in a complete set of Eigenfunctions of the Hamiltonian. This iterative
procedure converges the solution which approaches the ground state or the first
excited state in the special case of even potential where the wave functions can be
classified into even and odd functions. The whole process is based on this expansion
of the complete set of the wave functions associated with the Hamiltonian. For short
range potentials only few bound states can exist so the notion of expanding of the
initial guess wave function is not appropriate because of the lack of the complete
set of Eigenfunctions. This raises the question, is this method applicable to short
range potential or not. It was demonstrated, here, that it is possible to get the ground
state and the first excited state wave function for the short range potential which
does not have a complete set of Eigenfunctions.

General Theory

The solution to the operator equation (1) can be found in terms of the Green's
function as:

W(x,B) = [ G(x,x0, B)Wo(xo)dxo @)

Where G(x,xo, 8) = < x|e #|x, > is the Green's function of equation (1) for
any B, with the initial condition G(x,x,,0) = §(x — x) [2]. And

Yy(x) = WY(x, B =0) =an initial guess.
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The operator A can be written into the form A = H , + V(x) , so equation (2) can
be transformed into an iterative form [3]:

_B o _B
W(x,np) = e 2’ @ [P[Go(x, x0, B) + Go(—x, %0, )] €72 W(ago, (n —

DB)dx, 3)
_pH, 1 _ (x=xp)? . ' )
Where Gy (x, xo, f) = < x|e FHo|x, >= Nk 8 is the Green's function of
. = aG — d?
the equation H,G, = —a—; and Ho =——.

For even potentials V (x) the + sign is used for the even wave function W.(x) which
corresponds to the ground state wave function, and the — sign is used for the odd
wave function W,(x) which corresponds to the first excited state wave function.
Convergence is expected for large iterative steps n.

Applications

A - Short Range Exponential Potential.
This potential is a good example to test the applicability of the diffusion method
to short range smooth potential given by:

x|

V(ix)=—-Vye a —o<x < oo (4)

In Fig. 1 (a,b) we show the ground state and the first excited state wave function
respectively calculated using finite difference method, diffusion method, and the

h2
guess wave function was a small square well.

The red line is for the wave function calculated using finite difference method,
while the black line is for the wave function calculated using this diffusion
approximate method, and the blue line is for the wave function calculated using the
analytic method.

In tables 1(a,b) we show the numerically calculated Eigenvalues for the ground

state and the first excited state respectively with different v, . The first column
shows the results of the finite difference method calculated numerically when

analytic solution with v, = V, = 100 which are in good agreement. The initial
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W(x) calculated at mesh point x,, = An,n = 0 [4,5], where W(x,) = W,and A is
the distance between adjacent points x,,.; — x, = A.
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Figure 1. a) The normalized ground state wave function and b) first excited wave function

of short range exponential potential.

Wop1 = [2+ 8% (0 e ™" — €)W, — Wry (5)
__ 2ma? __ 2ma?
For v, —h—ZV0 and € = = |E].

For ground state wave function we choose the initial values of the wave function
as:

Y(xg) =¥ =10 and YQA)=¥,;=10+ (tﬁ) A2 (6)

And for the first excited state wave function we choose initial values of the wave
function as:

Y(x) =¥,=00 and WYQA)=¥,=c (7
Where c is a small constant.
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The second column shows the results using diffusion approximate method with
B = 0.001 and A= 0.001 where A is the mesh size of the coordinate x ie x,, = nA.
For the diffusion approximate method the initial guess wave function is compact in
small range near a square well, so the iterative procedure can be more efficient in
reducing the wave function to the ground state or to the first excited state. The

. . . . . . h? .
distance is measured in units of a, and the units of energy is - In these units the
Hamiltonian is H, = & and V(x) = —v e * wherevn_ = Zm_azv

0 dx? 0 0 p2 'O

The energy Eigenvalue € for ground state is calculated by means of numerical
evaluation of the expectation value of the Hamiltonian for the normalized wave
function using Simpson rule:

€= /" w(x) A¥(x)dx (8)

While the energy Eigenvalue for the first excited state is calculated by means of
numerical evaluation of the norm of the last convergent wave function by the
formula [3]:

£=— % In [© W (x,nB)W(x,nB)dx (9)

The last column shows the exact calculated energy Eigenvalue using an analytic
method by converting Schrodinger equation of short range potential to Bessel
function of order 2v/E€ by the transformation z = e™*/2@ where € is the energy
Eigenvalue written as [6,7]:

2 d2W

Z
dz?

ay
+2z—+ (4u,2> —4€)¥ = 0 (10)

2ma?
h2

2
Where v, = th—ZaV0 and €= |E]|

Forx >0 then O0<z<1
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equation (10) then has the solution ]2\/5(2\/;0 z). The even parity solution would

aj

satisfy J', = <2\/m:> = 0where J'is defined as J' = —= and the odd parity
solution satisfies ], & (2\/;()) = 0. Both conditions are calculated numerically to
obtain the Eigenenergies.

Table 1a. The ground state energy eigenvalues for the short range exponential potential
using different methods.

v, Finite difference Diffusion Exact
method approximation method solution

100 -79.7614 -79.7612 -79.7567

200 -167.324 -167.324 -167.316

Table 1b. The first excited state energy eigenvalues for the short range exponential potential
using different methods.

Y, Finite difference Diffusion Exact
method approximation method solution

100 -65.2907 -56.2887 -56.2882

200 -128.465 -128.466 -128.458

B - Square Well Potential.
This potential is another good example to test the applicability of the diffusion
method to short range but the discontinuous potential is given by:

-0, x| < a

V(x) =

0 x| > a

Where Schrodinger equation is put into the form:
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2
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In Fig. 2(a) we show the ground state wave function for v, = 100,a = 0.1
calculated using diffusion approximate method and exact analytic solution.

In Fig. 2(b) we show the first excited state wave function for v, = 100, a = 0.3
calculated using diffusion approximate method and exact analytic solution.

The wave functions calculated using the diffusion approximte method have a
discontinuity at x = a which caused difficulties in calculating the ground state
energy Eigenvalue.

The black line is for the wave function calculated using diffusion approximate
method, while the blue line is for the wave function calculated using the analytic
method.

In table 2(a,b) we show the numerically calculated Eigenvalues for the ground
state and the first excited state respectively with different v and a.

The first column shows the results using finite difference method calculated
numerically as before with:

Wosr = [2+8%(E—v,)|¥n — Pros (11)
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Figure 2. a) The normalized ground state wave function and b) first excited wave
function of square well potential.
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We choose the initial boundaries for the ground state and first excited state in the
form given by equations (6) and (7) respectively.

The second column shows the results using diffusion approximate method with
B = 0.0003, A= 0.001 for the ground state, and g = 0.0001 , A= 0.001 for the
first excited state. The energy Eigenvalues are calculated by evaluating the
expectation value of the Hamiltonian for the normalized wave function as [6]:

€= W (x) H¥(x)dx
And this can be transformed by partial integration into

€= [~ (¥ +V@)[¥YH)]Ddx

(12)

(13)

Table 2a. The ground state energy eigenvalues for the square well potential using different

methods.
Diffusion approximate method
0 a Finite Exact
0 .
difference € g, g, solution
method
100 0.1 -45.3756 | -55.7510 | -43.8804 | -45.3751 | -45.3753
200 0.2 -166.852 | -193.980 | -165.268 | -166.851 | -166.851

Table 2b. The first excited state energy eigenvalues for the square well potential using
different methods.

Diffusion approximate method
0 a Finite Exact
0 .
difference € €, g, solution
method
100 0.3 -42.2970 | -82.3097 | -41.6445 | -42.2970 | -42.2976
200 0.3 -130.062 | -219.871 | -129.672 | -130.061 | -130.062
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These two equations didn't result in acceptable results because of the
discontinuity of the wave function at = a , so we can get acceptable results for
€', by removing the peak in the square differential wave function as shown in Fig
3(b).

The last column shows the exact energy Eigenvalues using the analytic method.
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Figure 3. a) The square derivative of wave function and b) singularity removed.
Conclusion

We have used the diffusion approximate method developed by Grimm and Storer
to solve the Schrédinger equation to get the ground state and the first excited state
for an even short range potential. It was demonstrated, here, that this method is
applicable for solving the Schrédinger equation for short range potentials by an
appropriate initial guess wave function in a small range near the origin.
Discontinuous potentials manifest themselves in the final wave function as the
method cannot rid of the discontinuity. Extra care should be taken when evaluating
the energy Eigenvalues in this case.
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