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Abstract

In this Article the cofibration category machinery (see [1], [2]) is used to define strong coarse
homotopy groups (for preliminaries see [3],[4],[5],[6]) in the pointed quotient coarse category
PQcrs via the notion of strong coarse homotopy as defined in [7] which we proved to be a
Baues cofibration category in [8], [9]. In general, our definition is the same as the abstract
definition. Later we also show that there is a surjective homomorphism between these groups
and the n-dimensional coarse spheres.
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Preliminaries

This definition comes from [10].

Definition a.1. Let X be a set. Then X is called a unital coarse space if it is equipped with a
coarse structure, defined to be a collection & of subsets M of X x X called entourages
satisfying the following axioms:

@ll:ifMecand M © M,then M’ € ¢.

@l2): Let M;,M, €& then M, UM, e and M; M, €& where M; M,
={(x,2):(x,y) € My, (y,z) € M, forsomey}. We call M;M, the composite of
M, and M,.

(@.1.3): Axye e where Axy= {(x,x): x € X}.

(@.1.4):Upyes M= X X X.
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(@l15):Ifee, M* ={(y,x):(x,y) € M} € =.
We can use (X, ¢) to refer to a coarse space when we need to emphasize the collection of
entourages.
A subset M is called symmetric if M = Mt.

A non-unital coarse space is a coarse space defined as above, but we drop the axiom where
Ay must be an entourage.

The following definition comes from [11].

Definition a.2. Let R be the topological space [0,o0) equipped with a coarse structure
compatible with the topology (see (1.5) in [9]). We call the space R a generalised ray if the
following conditions hold:

(i) ThesumM + N ={(u + x,v + y)| (w,v) € M,(x,y) € N}is an entourage for any
entourage M, N € R x R.

(i) The set M* ={(u,v) € RXR|x <u,v <y,(x,y) € M} is an entourage. for any
entourage M C R XR .

(iii) The set a + N ={(a + x,a + y)|(x,y) € N} for any entourage N € R X R, and
any a €R.

The following definitions are prompted from [12].
Definition a.3. Let X, Y be coarse spacesand f : X — Y amap.
(a.3.1) We call f a locally proper map if f|y is proper whenever X' € X is a unital coarse
subspace, that is, the inverse image of a bounded set B € Y under the map |, is bounded.
(a.3.2) We call f a coarse map between non-unital coarse spaces if it is a controlled (see
(1.2) in [9]) and locally proper map. And we mean by f being a controlled map if for every
entourage M € X X X, the image f[M] = {(f(x), f(¥)) : (x,y) € M} is an entourage.

Definition a.4. Let f; g : X — Y be two coarse maps between non-unital coarse spaces. We
say that f is close to g if for any unital subspace X' € X, we have f | is close to g|, that is;
{(f(s),g9(s)):s € X'}isan entourage. For details see [8].
We call f a coarse equivalence between non-unital coarse spaces if f|ys S a coarse
equivalence whenever X’ < X is a unital coarse subspace, that is; there is coarse map The
g:Y = X' such that the compositions f|, o g and g o f|, are close to the identitymaps 1,
and 1, respectively. For details see [8].

Let X be a topological space. The product X x [0, 1] is called a cylinder on X.
We need to define a coarse version of the topological cylinder in order to define a coarse
version of homotopy.

The following definition comes from [13].
Definition a.5. Let X be a coarse space, R be a generalised ray, and p: X - R be some
controlled map. Then we define the p-cylinder of X:

LX ={(x,t) € X XR|t < p(x) + 1}
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The p-cylinder is a coarse space. We define the projection p':I,X — R by the formula
p'(x,t) = p(x) + t and we define coarse maps iy, i; : X = I,X by the formula iy(x) =
(x,0)and i; (X) = (x,p(x) + 1) respectively.

Our aim in this work is to define coarse homotopy theory using Baues cofibration category
technique on the category of non-unital coarse spaces. The above definition yields ideas of
homotopy and mapping cylinder which are vital to the construction.

Definition a.6. Let f;, fi: X — Y be unital coarse maps. A coarse homotopy between f;, f; is a
coarse map H: I,X — Y for some controlled map p: X - R suchthat f; = Hoiyand f; =
H o i, respectively.

We say the maps f;, fi: X = Y are coarsely homotopic between non-unital coarse spaces if
folx is coarsely homotopic to f; |, whenever X’ € X is a unital coarse subspace.
A coarse map f : X — Y is termed coarse homotopy equivalence if there is a coarse map g :
Y — X such that the compositions g of and f og are coarsely homotopic to the identities 1y
and 1, respectively.

The following definition is from [10].
Definition a.7: Let X be a subspace of the unit sphere S*~1 . Then we define the open cone of
X to be the metric space
CX={Ax:1€ RF, xe X} < R"

The open cone CX is a coarse space. The coarse structure is defined by the Eucli-dean
metric on R™.

The cone of S™1 is the Euclidean space R", and the n-cell D™ can be viewed as the upper
hemisphere in the cone of ™, so its cone is R™ x R*

The following definition comes from [10] .
Definition a.8:. Let X and Y be coarse spaces. Then we define the disjoint union to be the set
X U Y equipped with the coarse structure given by defining the entourages to be subsets of
unions of the form

M UN U (By X By) U (B'y x B'y)
where M € X x Xand N €Y XY are entourages, and By, B’y € X and By, B’y € Y are
bounded subsets. We denote this disjoint unionby X LI Y.

The following result is easy to check.
Proposition a.9: Let X and Y be coarse spaces, R be a generalised ray. Let py : X — R and
py : Y — R be controlled maps. Then X U Y is a coarse space and the map
Pxuy ¢ X U Y = R defined by the formula
_(px(x) x€X
Pxuy (x) - {py(X) x €Y
is a controlled map.m

The following definition comes from [14] and [15].
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Definition a.10: Let R be a generalized ray, n €N. Write SF~1 = (R UR)*, D} =
(R UR)™ x R where R LI R means two disjoint copies of R. We call S#~1 a coarse R-sphere
of dimension n — 1, D} a coarse R-cell of dimension n, and the coarse R-sphere {(x,0) €
DE:x € SE'}is called the boundary of the coarse R-cell D}, i.e. 9D} = SE~* x {0}.

The Main Structure

Definition 1: Let X and Y be non-unital pointed coarse spaces. Then we write [X,Y ]g tO
denote the set of strong coarse homotopy classes of pointed coarse maps from X to Y relative
to R.

Note that we have a canonical base (trivial) element of the set [X,Y ]r defined by the strong
coarse homotopy class of the pointed coarse map relative to a generalized ray R

Px ly
X->R->Y

where p, is some controlled map, and iy is the basepoint in the space Y.
Ifi: R — Aisthe basepoint inclusion, we set [RA = I;g)A.

Definition 2: For a given based object A in the category PQcrs, we define the torus Yg A,
where R € A by the push out diagram

Figure 1: torus g A

Here the space Y.g A is a based object. To draw an explicit picture, we take A = RLU R as an
example and the torus can be seen by lemma (3.10) in [7] to be coarsely equivalent to the
following space

O RURgue = (1) € RUR? s —Jx| =1 < £< x| + 1)/~
R

where (s,t) ~ (s,—t) forallse Rand —s =1 <t <s + 1, and (x, |x| + 1) ~(x, —|x|—1) for
all x € RuU R. Geometrically it can be viewed as follows

| ] |\:H

Figure 2. r(R U R))glue-
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Definition 3: Given a based object A in the category PQcrs and let [¢]: AVRA — A be the
folding class. Then the suspension, ). A, is defined by the commutative diagram

A "R
S
[RA > YrA > YA
T [¢] T [p] T
AVg¢A » A » R

where the lower two squares are push out diagrams. Here the spaces IgA, Y.r A, and ), A are

based objects.
Explicitly, and by lemma (3.10) in [7] we define the suspension of our above example to be

coarsely equivalent to the following space again;
CRUR)Ge = {(x,t) E(RUR)?: —|x]—1 <t < |x| + 1}/~ where
(s,)~(s,—t)forallseR, —s— 1 <t <s + 1, (x,|x| +1)~ (x,—|x| —1) forall x €

A and (x, |x| + 1) ~ (—x,|x| + 1) forall x € R.

The above space will be seen as the following:

Figure 3. X(RUR)) (e
By lemma (2.13) in [5], since I,A is coarsely homotopy equivalent to R, and any bounded

subset is coarsely equivalent to a point, our suspension is coarsely homotopic to the space in
the following figure, which is isomorphic to the space (R U R)?
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Figure 4. (X(RUR)),,. = (RUR)?

This implies by the above that the space ).(R U R) equipped with the Coequalizer coarse
structure is coarsely homotopic equivalent to the coarse sphere St = (R U R)2.

The suspension ) A depends on the choice of the coarse map p. Since ), A is a based object,
we can define inductively ¥"A = ¥ (3"1A),n > 1,Y°A = A.

The following theorem gives an important key to prove the main result.

Theorem 4: ¥ (R U R)¥ is coarsely homotopy equivalent to (R L R)**! for k > 1.
Proof. First let k = 1. Then the statement is true by the above calculation.

Now let k = 2. Then (RUR)®> = (RUR)?x (RUR). By the above this is coarsely
homotopy equivalent to };(R U R) x (R U R). It is enough to show that >;(R LU R) x (R U R)
is coarsely homotopic

equivalent to (R U R)?

We have Ix(R U R)? =~ Ig(R U R)? U Ig(R LU R)?/~ such that (a,0,t) ~

(a,0,—t), a€R, p:(RUR)? - Ris some controlled map defined by p(x,t) =
[|(x,t)|],x,t € R U R. By lemma (2.13) in [9], Ix(RUR)? is coarsely homotopy
equivalent to (R U R)Z.

Define a map q: RUR—= Rby q(x) = p(j(x)) = p(x,0) =|x| where j: RUR —
(R U R)? is the inclusion, then q is a controlled map, and again by lemma (2.13) in [9],
I;(RUR)is coarsely homotopy equivalent to (R U R). Therefore I,(R U R)? is coarsely
homotopy equivalent to I,(R U R) X (R U R).

Defineamap f : I,(RUR) X (RUR) - I,(RU R)?*as follows
x,vy,t) t< p(xy) + 1
fxty) {(x,y.p(x,y)+ Dtz pkxy) +1

We have another map g : I,(R U R)*> = I,(R UR) X (R U R) defined as follows

xty) t< qx) + 1
gxty) = {(x,q(x)+ L,y) t=qXx +1
Then f, g are coarse maps, also we have
(x,y,t) t<qx) +1
fog(x,y,0) =4 (,y,a®+ 1) qx) +1<t<pixy) +1
(xy,pxy)+ 1) t= p(xy) +1
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and
(x, t,y) t<qx) +1
gof(x,t,y) = {(x,qx)+ Ly) qx +1=<t<p(kxy) +1
(x,qx)+ 1,y) t= pxy) +1

It is very easy to verify that fog and gof are coarsely homotopy equivalent to the identities.
Consider the space
IR(R UR)x (R UR) =(Ig(R UR) UIq(R UR)/~) x (R U R)
where (a, t)~ (a,—t), a € R.
This can be written as:

(IqR UR) x (R uR)uIg(R UR)x (R U R))/~ where (a,t,0)~ (a,—t,0),
a € R. The above shows that [x(R U R) x (R U R) is coarsely homotopy equivalent to
L,(Ru R)*ul,(Ru R)?/~where (a,0,t)~(a,0,—t)
,a € R, and the later space is exactly Iz (R U R)2.
Hence Ig(R U R) x (R U R) is coarsely homotopy equivalent to Ix(R U R)2.
Now, look at the space
YRARUR)X (RUR)=(Ig(RUR)U (R UR))/~ X (R UR)where

(x,q(x) + 1) ~(x,—q(x) — 1),x € R UR. Thisisequal to

IRRUR)X (RUR)U (RUR)? /~where (x,q(x)+ 1,y)~ (x,—q(x) — 1,y), x,y €
R UR.

Again the above shows that Y:x(R U R) X (R U R) is coarsely homotopy equivalent to
IxR(RUR)? U (RUR)?/~ where (x,y,p(x,v)+ 1)~ (x,y,—p(x,y)—1),x,y €ERUR,
and this is exactly Yz (R U R)?2. Therefore

Z (RUR)X (R U R):Z (R U R)?
R R
Finally, consider
Z(R UR) x (R |_|R)=(Z (R U R) LU R)/~) X (R UR)

where (x,q(x) + D)~ (v,q(y) + 1) if q(x) =Rq(y),x,y € R U R. This is equal to

Z (RUR)X (R UR)URX(R LUR)

R

where (x,q(x) + 1,z)~ (y,q(y) + 1,2)if q(x) = q(y),x,y,and z € (R UR).

By the same technique used in lemma (1.8) in [7] we can prove that R x (R U R) is coarsely
homotopic to R. All that show

Z(R UR) x (R uR)zZ (R U R)2UR

where(x,z,p(x,z) + D~ (y,z,p(y,z) + 1) ifp(x,z) =p(y,2), x,y,andz € R U R,
This is exactly Y(R U R)?2. Therefore

YR UR) X (R UR) = ¥(R uR)2
Similarly we can prove that (R U R)Xx (R UR) is coarsely homotopic equivalent to
(R uR)X* fork > 2.
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In this stage we have proved that (R U R)?3 is coarsely homotopic equivalent to Y;(R U R)2.
Therefore the statement (R U R)" is coarsely homotopic to} (R L R)*"1 is true forn =1, 2,
and 3.

Now suppose that (R L R)™is coarsely homotopic equivalent to (R u R)""1 forn = k. We
need to prove the statementis true forn = k + 1.
By the above it is easy to see that:

(R UR)**1 = (R UR)XX (RUR) zZ(R U R)X1 x (RUR) =Z(R L R)K

Hence by induction the statement is true for all n, and we are done. m

Corollary 5: ¥ (R U R)Xis coarsely homotopy equivalent to ¥X(R u R) for k > 0.
Proof. Straightforward by the above theorem and the properties of the suspension. m

Definition 6: Let A and X be non-unital pointed coarse spaces. Let n > 0. Then we define the
n-th coarse homotopy group with respect to A to be the set of coarse homotopy classes of

. . A
pointed coarse maps " A — X relative to R, and denoted by 7, (X) where

A n
T(0 = ) AX]
. RUR ) ) Pcrs ] .
Proposition 7: If A= R LU R, then ~ (X) isomorphic to the group (X, R) in definition

(2.4)in[7].
Proof. : Straightforward by theorem (4). m

Definition 8: Let A and X be non-unital pointed coarse spaces. Let n > 0. Then we define
the n-th strong coarse homotopy group to be the set of strong coarse homotopy classes of
pointed coarse maps . A — X relativeto R

A,Strong n Strong
0 = ) AX]
In particular if A = R U R, we have:
RUR,St
T, 0(X) = [RURX]SO" = [R,X]Strons
. RUR,Strong
so we define the set m, (X) to be the set of strong coarse homotopy classes (not

relative homotopy classes) of coarse maps R — X, and we define the higher coarse homotopy
groups by writing
RUR,Strong

) = [y (RUR) K

Corollary 9: We have a well defined surjective homomorphism

A,Strong A
T, X) »m (X)

28



The Strong Coarse Homotopy Groups

Proof. Let f: " A — X be a pointed coarse map. By theorem (3.15) in [9], if [f Istrong =
[9]strong then [f] = [g]. So we have a homomorphism

A,Strong A
am, X) -, (X)

defined by a([f]strong) = [f], and a is clearly surjective. m

Definition 10: Let [i] : A < X be a coarse cofibration class. We write [IzA4; X]% to denote
the set of relative coarse homotopy classes of coarse maps F : IzA — X such that the map F
restricts to the base element

ABR3x
at the ends of the cylinder.

There is a canonical map from the set [¥ 4, X] to the set [IzA4; X]& arising from the maps
on the top row in the push-out diagram in the category PQcrs

gi—> XRA—— YA

.

AVRA > A » R
Figure 5: The suspension )’ A

used to define the suspension.

Proposition 11: The above canonical map [Y 4, X]z — [Ir4; X]% is a bijection.

Proof. By construction of abstract cofibration categories, every object in the pointed quotient
coarse category is both cofibrant and based. It follows that the quotient map IzkA — YgrA
induces a bijection [Xz A, X]r — [IrA, X]% from results in section (2) of chapter (II) of [1].
Also from [1], sections 5 and 6 of chapter (I1), we have [Iz4, X]%

is a group, and by proposition (2.11) (b)) in [1], the quotient map o: YR A — X A yields a
bijection [Y A4, X]z = [XrA,X]r. Since the composite of bijections is a bijection, we are
done. m

The abstract proof of the following proposition can be found in [1].

AS . . . .
Proposition 12: Let n = 1. Then the set 7, tmng(X) is a group. The operation is defined
by composition of strong coarse homotopies using the last proposition. The identity element is

the strong coarse homotopy class of closeness class of the base map
DIgA ix

IRA— R-X

ASt . .
Further. For n = 2, the strong coarse homotopy group 7, ond (X) is abelian. m
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Theorem 13. Let X be a non-unital pointed coarse space. Then there is a surjective

. RUR,S
homomorphism f: nnu trong(X) - [Sg, X]g-

Proof. First, by corollary (9), we have a surjective homomorphism
RUR,Strong RUR

am, X) »m, (X)
and by proposition (7) we have n:UR(X) is isomorphic to the group [Sg, X]g. So it is enough
to show that ¥™*(R U R) is coarsely homotopic to (R U R)™?! which is so by theorem (4),
and we are done. m
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