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Abstract

Long-range dependence (LRD) is a statistical measure for the speed of the autocorrelation
function's decay for a time series. A process that is said to have long memory if its
autocorrelation function decays is hyperbolic, instead of an exponential rate as the lag increase.
Some of the time series data persists towards non-stationary in the long run data. The effort of
differencing seems to be good solution towards the non-stationary counter parts. With regard
to the above matter, this research presents the usefulness of autoregressive fractionally
integrated moving average ARFIMA model as the solution towards the non-stationary
persistency of time series in the long run data. In this paper, we analyze the estimation of the
degree of differencing d in ARFIMA (0, d, 0) process, when the d belongs to the interval (0,
0.5). We present a simulation study for the estimators of d by using periodoagram a;,
smoothed period-diagram dgp, and Whittle d,, methods with different sample sizes (64, 128,
256, 512, 1024, 2048) and 1000 repetitions for each sample. In general, as sample size (n)
increases the estimators get even better, except for the d/s;, estimator. Furthermore, the Whittle
estimator d,, seems to be more accurate than the other estimators. The testing of hypothesis
results showed that, the estimates of the fractional differencing parameter d by Whittle’s
method has good performance as increasing of sample sizes and d. Also based on the
autocorrelation function, the results observed exhibitvery slow correlation decay which means
that the process has a long memory.
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Introduction

The Long-memory or long-range dependence (LRD), property describes the high-order
correlation structure of a series. If a series exhibits long memory, there is persistent temporal
dependence even between distant observations. Fractionally integrated processes that are
associated with hyperbolically decaying autocorrelations can give rise to long memory
(Beran, 1994). The autoregressive fractionally integrated moving average ARFIMA (p, d, Q)
model was introduced by Granger and Joyeux (1980). Since then there has been great studies
in the estimation of long- memory modelling e.g. Granger and Joyeux (1980), Hosking
(1981), Geweke and Portter-Hudack (1983), Sowel (1992) and Mayoral (2007). The
characteristics of ARFIMA (p,d,q) processes when d € (-0.5, 0. 5) are, the process is
stationary and invertible . Ford € (0, 0.5), the process is long memory and its covariance
is stationary while its variance is finite. Furthermore when d € (-0.5 , 0), the process is
identified as having intermediate memory, since autocorrelation is always negative (anti-
persistent), while when d=0 the process is stationary with short memory.

Estimating Of Fractional Differencing Parameter (d)

There are many estimators of the parameter d proposed in the literature. They are grouped
mainly into two categories: The semi-parametric and parametric methods. In the first group
one finds, for example, Geweke and Porter-Hudak (1983), Reisen (1994), Chen, et al.
(1994), Robinson (1995) and Lobato and Robinson (1996) and others. In the second category
are Fox and Taqqu (1986), Dahlhaus (1989) and Sowell (1992). Some recent simulation
studies comparing different techniques of estimation in long-memory process may be found
in Taqqu et al. (1995), Bisaglia et al. (1998), Taqqu and Teverovsky (1996), Reisen and
Lopes (1999) and Hurvich and Deo (1999). In this paper, we present only three estimator
methods for d by using periodoagram, smoothed period-diagram and Whittle methods.

The methods are summariezed as follows:
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Periodogram Estimator (d, )

The regression of the periodogram proposed by Geweke and Porter-Hudak (GPH)(1983),
denoted by (&; ), used the periodogram function I ). The number of observations in the
regression equation is a function g(n) of the sample size n where g(n) = n%, 0<a<1.
Geweke and Porter-Hudak (1983) showed that (ﬁp) is asymptotically normally distributed

with E(d,) =d and var (d,) = ——— Where
Xi— X

= In (2 sin(w;/2))2.

Smoothed Periodogram Estimator (d/S; )

The regression estimator using the smoothed periodogram function suggested by Reisen
(1994), denoted by (d’s\p). This regression estimator is obtained by replacing the spectral
density function by the smoothed periodogram function with the Parzen lag window. In this
method, g(n) is chosen as above and the truncation point in the Parzen lag window is

m=nf 0<B<1.
Reisen (1994) showed that ((Ts\p) is asymptotically normally distributed with E(&;,): d and
var(dsp) ~ 0.539285 —-

DRGSR

Whittle Estimator (d,, )
The parametric method considered, hereafter, denoted by (d,, ), was proposed by Fox and

Taqqu (1986), by adapting the approach suggested by Whittle (1953). The estimator (J,; ) is
based on the periodogram and it involves the function

Q)=

w4
mFw 0 W

Where, (w,, { ) is the spectral density at frequency & and ¢ denotes the vector that contains

the parameter d and also all the unknown autoregressive and moving average parameters.
The Whittle estimator is the value of { which minimizes the function Q(.). For computational
purposes the estimator (d,, ) is obtained by using the discreet form of Q(.), as in Dahlhaus
(1989, page 1753), that is,

I(W])

In(3) =3 XA {In fwj, ) + 05

For more detail see Fox and Tagqu (1986). The Whittle estimator is the value of ¢ which
minimizes the function.

Methodology

We have conducted simulation studies to obtain some information about the degree of
differencing parameter from ARFIMA (0, d *, 0) where d "< (0.0,0.5). In this study we
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generated a time series with parameter d * = 0.1, 0.3 and 0.45, and sample sizesn=2™,
where m = 6, 7, 8, 9, 10, 11. Next, we estimated d using three methods. Two of them are
semi-parametric. These are the dg,, dg,) and the d,, . For each kind of time series, we
repeatedly carried out the procedure 1000 times. Accordingly, we reported the average

values of the estimates of d, the corresponding sample standard deviations, the bias and the
mean square errors.
The following notation is used. If d “is the nominal value of d and d; is the estimate for
sample i then,
1000

5_ 1 1000 ~2 _ 1 1000 ., S 2 __1 a2
d__moo Yic1 d;, © = 599 Zi=1 (d; — d)* and MSE——moo Zi=1 (d; —d )=
The results obtained considering B = 0.9 in the truncation point for the smoothed
periodogram function in the d;, estimator. For J;and d:;, estimators we consider g(n)=
n“=n%5 and the R 3.0.0 software package were used for data analysis.

Simulation Study

In this simulation study we followed the research methodology in order to obtain empirical
results about estimating fractional differencing parameter in ARFIMA (0,d,0). The summary
of results is as follows:

In Tables 1 and 2, we consider the estimation of d *e {0.1, 0.3, 0.45}. The best values of
the bias (smallest absolute value), and smallest values of the standard deviation and the mean
square error are presented in boldface. From Table 1, we can see that, for the case when d *
e {0.1, 0.3, 0.45}, with n = 64 and 128, also which is similar to d "= 0.3 with n = 256. In
addition, J;estimator presents good results in the sense of minimizing the bias. The mean
values of d;; and d,, underestimate the true parameter. It should be noted that n = 256 may
not be large enough for some of the methods to perform better for n = 512, 1024, 2048 and
4096. The results indicate that the J; and d,, estimators perform reasonably well and are
very competitive and underestimate d *. The bias of all methods decrease substantially as n

increases with d,, having the downward bias in the whole range of d *.
From the results summarized in Table 2, it is clear that all estimators present good results,
in the sense of minimizing the standard deviation and the mean squared error values.

However, the standard deviation and the mean square error of d based on &; tends to be
larger than that of other methods. The standard deviation and the mean squared error of the
estimator calculated by d,, are also smaller than those of the estimator calculated by &; and

d/s; . We can see similar a phenomenon at all sample sizes in the whole range of d *, where
d,, is the best estimator compared with d, and dy,, . Although the d, estimator has better
performance than &; in terms of small standard deviation and mean squared error values,

which is expected, since d;, uses the smoothed periodogram function to estimate the
spectral density function.
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Table 1. Mean and bias of parameter estimation d from ARFIMA (0, d *, 0) model.

d* =01 d*=0.3 d*=0.45
n Estimato Mean Bias Mean Bias Mean bias
r
J; 0.0981 | -0.00190 | 0.3067 | 0.00670 | 0.46840 | 0.01840
64 0 0
d’;;, 0.0139 | -0.08605 | 0.2010 | -0.09895 | 0.35038 | -0.09962
5 5
@ 0.0840 | -0.01596 | 0.2862 | -0.01376 | 0.41731 | -0.03269
4 4
&; 0.0896 | -0.01033 | 0.2933 | -0.00666 | 0.45223 | 0.00223
128 7 4
d’s‘p 0.0278 | -0.07219 | 0.2171 | -0.08285 | 0.36828 | -0.08172
1 5
@ 0.0888 | -0.01112 | 0.2911 | -0.00884 | 0.43364 | -0.01636
8 6
J; 0.0935 | -0.00647 | 0.2983 | -0.00162 | 0.46232 | 0.01232
256 3 8
d?p 0.0478 | -0.05215 | 0.2441 | -0.05586 | 0.40053 | -0.04947
5 4
J.; 0.0950 | -0.00498 | 0.2975 | -0.00241 | 0.44709 | -0.00291
2 9
J; 0.1035 | 0.00350 | 0.3098 | 0.00985 | 0.46765 | 0.01765
512 0 5
d/s; 0.0659 | -0.03409 | 0.2646 | -0.03531 | 0.42028 | -0.02972
1 9
J.; 0.0976 | -0.00236 | 0.2993 | -0.00064 | 0.45075 | 0.00075
4 6
J; 0.1021 | 0.00213 | 0.3057 | 0.00570 | 0.46358 | 0.01358
102 3 0
4 d/s;) 0.0746 | -0.02535 | 0.2752 | -0.02477 | 0.43182 | -0.01818
5 3
J; 0.0980 | -0.00194 | 0.2992 | -0.00029 | 0.45109 | 0.00109
6 2
J; 0.1049 | 0.00490 | 0.3080 | 0.00884 | 0.46228 | 0.01228
204 0 4
8 d,s; 0.0840 | -0.01600 | 0.2835 | -0.01646 | 0.43945 | -0.01055
0 4
J; 0.0989 | -0.00102 | 0.2997 | -0.00029 | 0.45100 | 0.00100
8 1
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Table 2. Standard deviation and Mean square error of parameer estimation d from
ARFIMA(0, d ", 0) model.
d =01 d"=0.3 d"=0.45
n | Estimato | St Dev MSE St Dev MSE St Dev MSE
r
&; 0.34160 | 0.01080 | 0.3337 | 0.0106 | 0.3279 | 0.0104
64 0 0 0 0
d’s; 0.23752 | 0.00751 | 0.2429 | 0.0076 | 0.2464 | 0.0077
3 8 9 9
d, 0.12696 | 0.00401 | 0.1242 | 0.0039 | 0.0969 | 0.0030
5) 3 4 7
&; 0.26844 | 0.00849 | 0.2737 | 0.0086 | 0.2724 | 0.0086
128 5 6 8 2
d’s; 0.19586 | 0.00619 | 0.2041 | 0.0064 | 0.2070 | 0.0065
8 6 8 5
d, 0.08149 | 0.00258 | 0.0829 | 0.0026 | 0.0683 | 0.0021
3 2 5 6
&; 0.20860 | 0.00660 | 0.2167 | 0.0068 | 0.2056 | 0.0065
256 4 5 4 0
d?;; 0.15798 | 0.00500 | 0.1642 | 0.0052 | 0.1683 | 0.0053
8 0 9 2
d, 0.05315 | 0.00168 | 0.0537 | 0.0017 | 0.0473 | 0.0015
3 0 0 0
J; 0.17212 | 0.00544 | 0.1689 | 0.0053 | 0.1718 | 0.0054
512 5 4 6 3
d;, 0.13264 | 0.00419 | 0.1367 | 0.0043 | 0.1407 | 0.0044
3 2 0 5
d, 0.03709 | 0.00117 | 0.0370 | 0.0011 | 0.0344 | 0.0010
7 7 4 9
&; 0.13284 | 0.00420 | 0.1346 | 0.0042 | 0.1317 | 0.0041
102 2 6 3 7
4 d’s; 0.10561 | 0.00334 | 0.1086 | 0.0034 | 0.1108 | 0.0035
8 4 0 0
d, 0.02517 | 0.00080 | 0.0253 | 0.0008 | 0.0251 | 0.0008
6 0 5 0
&; 0.10627 | 0.00336 | 0.1061 | 0.0033 | 0.1097 | 0.0034
204 7 6 5 7
8 d/s;) 0.08614 | 0.00272 | 0.0883 | 0.0027 | 0.0903 | 0.0028
1 9 9 6
d, 0.01816 | 0.00057 | 0.0182 | 0.0005 | 0.0184 | 0.0005
6 8 9 9
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Table 3 shows the confidence interval and testing of hypothesis for d "= 0.1. From the
results, we can see that the @estimator is acceptable for all sample sizes, while the d,, is

Table 3. Confidence interval and testing of hypothesis: Ho: d "= 0.1 vs Hi: d "#0.1.

n | Estimato | Mean 95% ClI T P-value Decision
r
d, |00981 |(0.0769; 01192) [-0.18 |0.857 Accept
64 1" q,_, [00140 [(-0.00079; 0.02869) |-11.46 | 0.000 Reject
d, |00840 [(0.07616; 0.09192) |-3.98 [0.000 Reject
d, |00897 [(0.07301; 0.10633) |-122 |0.224 Accept
éZ d,, |00278 |(0.01565; 0.03996) |-11.66 | 0.000 Reject
d, |00889 [(0.08383; 0.09394) |-431 [0.000 Reject
d, |00935 | (008058, 0.10647) [-0.98 |0.327 Accept
25 d,, |00479 |(0.03805; 0.05765) |-10.44 |0.000 Reject
d, |00950 [(0.09172; 0.09832) |-2.96 |0.003 Reject
d, |01035 |(009282; 011418) [0.64 0521 Accept
gl d,, |00659 |(0.05768; 0.07414) |[-8.13 |0.000 Reject
d, 00976 |(0.09534; 0.09994) [-2.01 |[0.045 Reject
d, |01021 |(009389; 011038) |[0.51 |[0.612 Accept
%g d,, |00747 [(0.06810; 0.08120) |[-7.59 |0.000 Reject
d, 00981 |(0.09649; 0.09962) |-2.44 |0.015 Reject
d, |01049 |(009830; 011149) [146 |[0.145 Accept
Zg d, |00840 |(0.07866; 0.08935) |-5.87 |0.000 Reject
d, 00990 |(0.09785 0.10010) |-178 [0.075 Accept

acceptable only when the sample size very large at n = 2048.

In Table 4, the results of confidence interval and testing of hypothesis for d *= 0.3, show
that the J; estimator has the same results shown in the Table 3, except when the sample
size n = 2048. While the d,, estimator has better results compared with d *= 0.1 in Table (3).
The results of confidence interval and testing of hypothesis for d "= 0.45, in Table 5 showed
that the performance of d,, estimator is more powerful for the sample size n = 256,
comparing with the performance of J; estimator.

In general, as n increases the estimators get even better. Except for the d/s;, estimator, the

other methods tends to estimate the true parameter. Furthermore, the d,, estimator seems to
be more accurate; smaller bias, SD and MSE, than the other estimators. Testing of hypothesis
results showed that, the estimates of the fractional differencing parameter d by Whittle’s
method showed good performance with increase of sample sizes and d. So that we depended
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on it to estimate the true parameter for real time series data which is under research and
study.

Table 4. Confidence interval and testing of hypothesis: Ho: d "= 0.3 vs Hi: d "# 0.3.

N Estimat Mean 95% ClI T P-value | Decision
or
d, |03067 |(0.28600; 0.32740) |0.64 |0523 | Accept
64 d,, |0.20105 [(0.18597; 0.21612)|-12.88 |0.000 | Reject
d, |0.28624 |(0.27853; 0.29395) |-350 |0.000 | Reject
d, |029334 |(0.27636; 0.31033) |-0.77 |0.442 | Accept
128 d, |0.21715 [(0.20448; 0.22983)|-12.83 |0.000 | Reject
d, |0.29116 |(0.28601; 0.29630) | -3.37 |0.001 | Reject
d, |029838 |(0.28493; 031182) |-0.24 |0.813 | Accept
256 d,, |0.24414 [(0.23394; 0.25433)[-10.75 |0.000 | Reject
d, |0.29759 |(0.29426; 0.30093) | -1.42 [0.157 | Accept
d, |030985 |(0.29936; 0.32033) | 1.84 |0.066 | Accept
512 d,, |026469 |(0.25620; 0.27317)[-8.17 [0.000 | Reject
d, |0.29936 |(0.29706; 0.30166) |-0.55 |0.585 | Accept
d, |030570 |(0.29735; 0.31406) | 1.34 |0.181 | Accept
1024 g ]0.27523 [ (0.26849; 0.28198) | -7.21 |0.000 | Reject
d, |0.29922 |(0.29765; 0.30079)|-0.97 [0.330 | Accept
d, |030804 [(0.30145; 0.31463) 239 [0.017 |Reject
2048 | g 0.28354 |(0.27806; 0.28902)|-5.89 |0.000 | Reject
d, |0.29971 |(0.29857; 0.30084) |-0.51 [0.609 | Accept

Autocorrelation for Long Memory

The detection of long-range dependence in time series analysis is an important task, as we
know the theoretical definition of a long-memory (or long-range dependent) process is based
on the autocorrelation function, where the autocorrelation declines hyperbolically to zero
when the lag length increases.

The model ARFIMA(0,d,0) can be investigated further by analysing the behavior of the
autocorrelation function. The results are displayed with different values of d and sample size
n. Figures (1-3) provide three graphs of three models of ARFIMA(O, 0.1, 0), ARFIMA(O,
0.3, 0) and ARFIMA(0,0.45,0), with sample sizes of 64, 28 and 256. In each Figure, the
series on the three graphs show indistinguishable differences between them without proper
statistical tools. This can solve this problem using autocorrelation as a tool designed for the
properties of long memory with autocorrelation.
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Table 5. Confidence interval and testing of hypothesis: Ho: d "= 0.45 vs Hi: d "# 0.45.

N Estimator | Mean 95% ClI T P- | Decision
value
d, 0.4684 | (0.44800; 0.48870) | 1.77 | 0.077 | Accept
64 d,, 0.3504 | (0.33509; 0.36568) | -12.78 | 0.000 | Reject
d, 0.4173 | (0.41130; 0.42333) | -10.66 | 0.000 | Reject
d, 0.4522 | (0.41130; 0.42333) | 0.26 | 0.796 | Accept
128 d,, 0.3683 | (0.35543; 0.38113) | -12.48 | 0.000 | Reject
d, 0.4336 | (0.42939; 0.43788) | -7.57 | 0.000 | Reject
d. 0.4623 | (0.44956; 0.47508) | 1.89 | 0.059 | Accept

256 d 0.4005 | (0.39008; 0.41098) | -9.29 | 0.000 | Reject

0.4471 | (0.44416; 0.45003) | -1.94 | 0.052 | Accept
0.4677 | (0.45698; 0.47831) | 3.25 | 0.001 | Reject

512 d 0.4203 | (0.41155; 0.42901) | -6.68 | 0.000 | Reject

0.4508 | (0.44861; 0.45289) | 0.69 | 0.491 | Accept
0.4636 | (0.45540; 0.47175)| 3.26 | 0.001 | Reject

1024 d 0.4318 | (0.42495; 0.43870) | -5.19 | 0.000 | Reject

d, 0.4511 | (0.44953; 0.45265) | 1.37 | 0.172 | Accept
d, 0.4623 | (0.45547; 0.46909) | 3.54 | 0.000 | Reject
2048 d,, 0.4395 | (0.43385; 0.44506) | -3.69 | 0.000 | Reject
a. 0.4510 | (0.45005; 0.45234) | 1.66 | 0.051 | Accept

Figures 4-6, provide three graphs for the ACF of the three ARFIMA models, with sample
sizes 64, 128 and 256. It is observed here, that the correlation decays very slowly. The
intuitive interpretation is that the process has a long memory. Although in the case of
ARFIMA(0,0.1,0) process, the autocorrelations decays to zero so fast. In this case,
obviously, the process is not affected by the long memory, because the process with a small
value of the parameter closes to zero. That is why, there is a class of short memory that is
easily confused with long memory processes (misspecification).
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Fig. 1. Simulated time series for ARFIMA(0, d *,0) processes with fixed sample size 64 and
different values of d “(a) d = 0.1, (b) d "= 0.3 and (c) d "= 0.45.
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Fig. 2. Simulated time series for ARFIMA(O, d *,0) processes with fixed sample size 128
and different values of d “(a) d "= 0.1, (b) d "= 0.3 and (c) d "= 0.45.
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Fig. 3. Simulated time series for ARFIMA(O, d *,0) processes with fixed sample size 256
and different values of d *(a) d "= 0.1, (b) d "= 0.3 and (c) d "= 0.45.
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Fig. 4. ACF of ARFIMA(O,d *,0) processes with sample size 64, and different values of
d"(d)d"=0.1,(b)d"=0.3and (c) d "=0.45.

Conclusion

In this work, we have studied how to fit autoregressive fractionally integrated moving
average ARFIMA models, as a solution towards the non-stationary persistency of time series
in the long run data. Hence, we analyzed the estimation of the degree of differencing d in
ARFIMA(O, d, 0) process, when it belongs to the interval (0, 0.5). We present a simulation
study for the estimators of d, among the methods of estimating the parameter of the
ARFIMA model. Three methods were used; Geweke-Proter- Hudak’s (GPH) estimator
(d,, ), smoothed periodogram (dg,, ) estimator and Whittle's estimator (d,, ). We compared
them by simulation based on artificially generated time series by ARFIMA(O, d, 0) withd
e {0.1, 0.3, 0.45} and different sample sizes (64, 128, 256, 512, 1024, 2048) and 1000
repetitions for each sample.
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Fig. 5. ACF of ARFIMA(0,d *,0) processes with sample size 128 and different values of
d"(d)d"=0.1,(b)d"=0.3and (c) d "=0.45.

The results indicate that the performance of the d,, estimator is usually good compared
with the other semi-parametric methods d and dsp ; it has small standard deviation and
mean squared error for all cases. Also as n increases more than 256, the average of d was
nearer to the true value with smaller bias than the other estimators were. The estimator based
on smoothed periodogram has significant downward bias, but has better performance than
&; in terms of small standard deviation and mean squared error. The &; estimator presents
good results in the sense of minimizing the bias when the sample size is less than 256. The
testing of hypothesis results showed that, the estimates of the fractional differencing
parameter d by d,, has good performance with increase of sample sizes and d. So that we
depended on it to estimate the true parameter for real time series data which is under study.
On other hand, based on the behavior of autocorrelation function, the autocorrelation
declines hyperbolically to zero when the lag length increases. The results displayed with
different values of d and sample size n, based on three models ARFIMA(O, d, 0)d=0.1, 0.3,
0.45. It was observed that the correlation decays very slowly. The intuitive interpretation is
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Fig. 6. ACF of ARFIMA(0,d *,0) processes with sample size 256 and different values of
d"(d)d"=0.1,(b)d"=0.3and (c) d "=0.45.

that the process has a long memory. Although in the case of ARFIMA(0,0.1,0) process the
autocorrelations decay to zero was so fast. In this case, obviously the process is not affected
by long memory, because the process with a small value of the parameter closes to zero.
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