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Starting from the classical energy equation of planetary motion and reviewing the 

refinement picture of Bohr model of hydrogen atom, the orbits of electron around 

hydrogen nucleus have been determined. The values of eccentricity of electron orbits 

fall within the range from 0 to 1, indicating that the path of an electron changes from 

circular to elliptical orbits, hence it continues toward parabolic orbits. 
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1. Introduction 

The classical model of the hydrogen atom [1] 

representing an electron of charge e  and mass m

orbiting an infinitely massive nucleus of charge e . 

This picture depicts that the electron travels around the 

nucleus in a similar structure to any solar planet orbiting 

the sun, with an attraction provided by electrostatic 

forces [2] rather than the force of gravity, where the 

motion of electron is governed by a central attraction 

force [3] Since the central force is conserved [4], the total 

energy forming a constant [5-7], which resulting the 

known radial solution [5,8]: 
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This is equivalent to the equation of an elliptical orbit, 

with θ  locates r from one focus with respect to the semi-

major axis a, and ε denotes the eccentricity of the orbit 

[5] 
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In what follows, we present our approach in section 2, 

followed by results of our calculations in section 3, and 

finally we draw our conclusion in section 4.  
 

2.Ansatz and Approach 
 

We employ Eq. (1.2) in quantum physics by quantizing 

the energy and angular momentum of orbiting electron 

[9-10] , where the total energy that binds an electron in 

the nth orbit of hydrogen atom is given by [11]:  
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and that the total angular momentum of the 

corresponding orbiting electron [12] is 

2 2
( 1)   0,  1, ,  2, 1L l l l n         (2.2) 

With the help of Eq. (2.1) and Eq. (2.2), one can rewrite 

Eq. (1.2) in a quantized form, giving the eccentricity of 

the orbits as 
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this Eq. (2.3) can be compared with geometric 

eccentricity of an ellipse of radii a and b: 
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The ansatz is to monitor the link between Eq. (2.3) and 

Eq(2.4), that may reproduce the azimuthal quantum 

number introduced by Bohr-Sommerfeld in 

quantization rules [13-14] This can be achieved by 

imposing the following criterion [13,15]: 
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where k denotes the azimuthal quantum numbers. 

According to the Bohr-Sommerfeld model of an atom 

[1], the orbiting electron can have discrete radii 
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where 0a  is the Bohr radius [16]. Eq. (1.1) to include 

discrete orbits: 
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This is our fundamental equation, it can be used to 

describe and to calculate electron orbits around 

hydrogen nucleus. 
 

3.Results and Discussion 

The corresponding values of eccentricity, Eq (2.3) and 

Eq (2.5), fall within the range 0 ≤ ε ≤ 1, which describes 

the change of electron trajectory from a circle ε = 1 to 

an ellipse 0 < ε < 1, and thereafter when  it 

gradually reaches a parabola ε = 1. In such parabolic 

orbits the electron may continue to lose energy until it 

becomes unbound. With the aid of Figure 1Figure 1, one 

can calculate the semi-major axis from Eq. (2.6) and 

hence the semi-minor axis [15] by using the following 

relation: 

0nkb a nk     (3.1) 

The radial location of electron is calculated from Eq. 

(2.7). Figure 2, gives an overview of the semi-major and 

semi-minor axes of electron orbits in hydrogen atom for 

the first three quantum numbers n, k. The figure also 

depicts how rapid is the electron position displaced from 

the nucleus. Electron location with respect to one focus 

rnk(θ) varies with the eccentricity of the orbit. In all 

cases the electron circles the nucleus a distance 

coincides with a multiple of Bohr radius, then gradually 

diverts from a circular orbit depending on the values of 

n and k, in accord with Eq. (2.7). As the electron orbits 

change from circular to elliptical, and thereafter 

parabolic, it gradually displaced away from nucleus, 

tending to infinity. In this circumstance, the electron can 

easily escape from the nuclear potential and hence 

becomes a free electron. Figure 1Figure 1 shows the 

calculated parameters with the corresponding numerical 

values given in Table 1. 
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Figure 1. Common parameters used to describe elliptical 

orbits. 
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Figure 2. Different sizes of semi-major and semi-minor 

axes  of electron orbits for the first three values of n and 

k. The nucleus is denoted by a solid dot to represent the 

focus of corresponding orbit. 
 

Table 1. Common parameters describe electron route in 

 hydrogen atom 

n En [eV] k = 1 k = 2 k =3 

1 13.60 

 = 0 

a / b = 1 

r0 = 0.53 

r

 = 0.53 

ra = 0.53 

r1 = 0.53 

  

2 3.40 

 = 0.87 

a / b = 2 

r0 = 0.28 

r

 = 0.53 

ra = 2.12 

r1 = 3.95 

 = 0 

a / b = 1 

r0 = 2.12 

r = 2.12 

ra = 2.12 

r1 = 2.12 

 

3 0.15 

 = 0.94 

a / b = 3 

r0 = 0.27 

r

 = 0.53 

ra = 4.76 

r1 = 9.25 

 = 0.75 

a / b = 1.5 

r0 = 1.21 

r = 2.12 

ra = 4.76 

r1 = 8.31 

 = 0 

a / b = 1 

r0 = 4.76 

r = 4.76 

ra = 4.76 

r1 = 4.76 

 
4.Conclusion 

The followed approach is mainly based on planetary 

motion of orbits under the action of a central force, 

where the semi-major and semi-minor axes of orbiting 

electron in hydrogen atom were obtained by evaluating 

the corresponding eccentricity in a simple 

straightforward way. The position of electron at any 

point of the orbit around the nucleus is precisely located 

by using the radial equation of planetary motion. The 

calculations were carried out by employing the total 

energy that binds electron in the hydrogen atom (the 

ground state zero point energy of hydrogen atom) and 

using Bohr radius as the closest approach of electron to 

the nucleus. It is hoped that this work can be improved 

and extended to subnuclear scale, to provide a sort of 

firm understanding. 
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