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Abstract

The techniques directed toward errors containment for solving ill-conditioned
linear systems Ax=b, is an important topic in both applied mathematics and
computer science. Usually floating point numbers are used to represent real
numbers, and any computation involving floating point is subject to several
types of errors (inherent errors, truncation errors, and round-off errors). These
errors are usually accepted. But in critical situations it is considered a
catastrophic. The aim of this paper is to provide an alternative approach for
solving ill-conditioned linear systems using rational numbers with long integer
capacities, and demonstrate this by empirical tests of various known ill-
conditioned cases. The results indicate computing with rational numbers does
not suffer from round-off errors accumulation.
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Introduction

Methods for solving ill-conditioned linear systems Ax=b have been studied for
a long time. When a system is ill-conditioned [1], several types of errors can
occur in numerical calculations and round-off errors may accumulate, or
exaggerated by the solution procedure and may produce meaningless result. Even
though the errors cannot be eliminated, it is possible to have them contained. In
the presence of rounding errors, ill-conditioned linear systems are inherently
difficult to handle, and one must avoid ill-condition whenever possible. Virtually
all previous numerical methods perform their calculations using floating point
arithmetic. On the other side, by rewriting the linear system using rational
numbers with long integer capability, the computed solution does not suffer from
round-off errors accumulation and an exact rather than an approximate solution is
obtained.

Floating point Numbers and Rounding Errors Background

There are infinitely many real numbers, but a computer can deal only with
finitely many. In computing, floating-point numbers only approximate the much
larger set of real numbers, but the exact value requires infinitely many digits and
computers cannot handle no matter what precision used (double precisions or
extended precision). For example, no way a computer can exactly compute (1/3)
and has to be approximated within some tolerance (typically to 16 digits). On the
other hand, certain numbers are well-defined in a decimal context e.g., the number
(0.1) when convert it into binary number yields 0.0001100110011... This infinite
expansion has to be truncated somewhere. Therefore, 0.1 cannot be accurately
represented by a finite number of binary digits. Thus, 10x0.1 will not result in the
exact value 1.0; instead it will be missed by about 1076, Furthermore, there are
many situations in which we are unable to control the undesirable propagating
effects of numerical errors. Consider the following: Set a=1234.567, b=45.67834
and ¢=0.0004: mathematically (a+b)+c = a+(b+c). This is not the case with
floating number computations (Try it!). The losses in the intermediate
computations will differ, and you will have a different result for different ways
numbers are added. Moreover; consider the following: Setu=1,w=3,x =
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(1000/3), and y = 333, the expression u-w.(x-y) evaluate to zero. However, when
(u, w, X, y) represented using floating point, the expression u-w.(x-y) will be
evaluated to 5.684341886080802x10. Therefore, except for integers and some
fractions, all binary representations of decimal numbers are approximations, and
round-off errors are inevitable [2-4].

Current Techniques for Solving Ill-conditioned Linear Systems

There is an extensive research directed toward errors containment in solving
system of linear equations Ax = b, with and without the use of a computer. As
systems are often ill-conditioned due to the finite precision representation of real
numbers on a computer, various methods for solving ill-conditioned systems have
been proposed. Possible previous remedies to minimize errors containment
include [5]:

1. Partial or complete pivoting.

2. Work in double precision or extended precision.

3. Transform the problem into an equivalent system of linear equations by
scaling.

In 1981, Rice stated "if the problem is ill-conditioned, then no amount of
effort, trickery, or talent used in the computation can produce accurate
answers except by chance" [6].

Rational Numbers Characteristics

In mathematics, a rational number is any number that can be expressed as the
quotient or fraction (p/q) of two integers, a numerator p and a denominator g, with
g # 0, and can be used to express real values (e.g., 0.1 will be represented by
1/10), and an integer value is equivalent to a rational value with a unit
denominator [7]. Mathematicians define rational number (fraction) as an ordered
pairs of integer (p, q) and q # 0, for which the operations addition, subtraction,
multiplication, and division are defined as follows:

1. (a,b) x (c,d) = (ad * bc,bd)

2. (a,b) x (c,d) = (ac, bd)

3. (a,b) = (c,d) = (ad,bc), whenc # 0

4. (a,b)™ = (a™ b™),wheren € Z,

5. (a,b)™™ = (b™,a™),wheren € Z, anda # 0

In computer science, rational numbers can be defined as “class” of ordered
pairs of integers (p, q) together with extending the basic operations ('+', '—', 'x', '+,
integer powers) performed by methods through operator overloading. Therefore,
linear system of the form:
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Ax=b, A€EF™ xeF", beF" (1)
Can be represented by:
Ax=b, AeQ™", xeQ", heQ" (2)

Where F denotes the set of floating point numbers, and Q denotes the set of
rational numbers.
Example: consider the following linear system [8].

0.0184 0.1507  0.1851
0.1092 -0.0172 -0.2726

—0.4781 -0.8046 —-0.0184
Can be transformed into rational Format

X1 0.3542
xz‘ = [—0.1807]
X3 —1.5025

23 1507 1851 7 - 1771 1
1250 10000 10000 |, 5000
273 —43  —1363 x; _|—-1807
2500 2500 5000 ||, 10000
—4781 —4023 -23 —601
10000 5000 1250 - L 400

And the computed solution vector x will be in rational form; i.e., all x; in fraction
form (p/q).

2887628370

x, = — 287028370 . 3.085344894742323
935917529

x, = 227209 - 3719196874343402
1871835058

Xy = ——299938% () 8077397239345862
1871835058

Proposed Solution

The basic idea of the rational scheme consists of three steps, and can be
described as follows:
1. Convert the linear system Ax = b from floating point format Eq. (1) into an
equivalent rational numbers representation as shown below Eqg. (3).

S1(ap.aq), - (%5 %0) = (bp.bg),,  i=1.m 3)
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Compute Al the inverse of a matrix A (assume A is nonsingular which may be
ill-conditioned), where all arithmetic operations ('+', '—', 'x', '+', integer.

2. powers) and relational operations such as (=, #, >, <, <, >) are done in rational
arithmetic.

3. Obtain the solution vector x = Alb. The advantages of this method to solve
linear equations, there is no need to re-calculate the Al each time if b is
changed [9]. The resulting vector x will be in rational format [x; =
(xp/xq) i »i =1,2,..,n]. The accuracy of the solution vector increases even
if the solution will be transformed back to real numbers (i.e., best
approximation, no round-off errors accumulation).

Verification Steps

In order to assess the performance of the rational model, and to show the
accuracy of the approach certain measures were taken in consideration such as:

1. Computing the condition number x(A) = [|A].||A™Y|| [10] which is an indication
of how sever the ill-condition. A large condition number indicates ill-
conditioning.

2. Suppose x is a computed solution of Ax =b. Computing the residual r=b-AX,
clearly if r equal zero, and x - X = 0 is an indication that the solution is an
exact [11].

3. Computing the identity matrix 1 = A.Al which is an indication that computed
Al is the exact inverse of A.

4. Computing A' = (A1), If A- A" =0, shows that no round-off error occurred
in the computation of (A1),

Empirical Test Cases and Results

Several empirical tests were conducted to demonstrate the capability and
accuracy of this approach using well known techniques where all computation are
done using rational numbers. The results indicate that using rational numbers
computation give the exact solution rather than an approximate solution even for
the extremely ill-conditioned system. To demonstrate the capability of the
proposed Algorithm, variety of linear systems of the form Eq. (3) have been tested
and exact results obtained. To mention a few all examples presented by Acquah
[12], an extremely ill-condition linear system [13], Hilbert matrix [14,15] with
different values for n < 300, and others. Appendix A provides a sample of cases
that have been tested using this approach.
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Conclusion

An alternative approach for solving linear system Ax = b, which may be ill-
conditioned wusing rational numbers is presented with several examples
demonstrate the power of the rational arithmetic approach. The conclusions
drawn from testing our model with many test cases can be summarized as follows:
1. Exact solution obtained rather than numerical approximation.

2. No need to modify the ill-conditioned matrix in order to make it a better
conditioned.

3. No round-off errors occurred during intermediate iteration, and no error
propagation. Therefore, no round-off errors accumulation.
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Appendix - Computational Results
The following are samples of test cases that have been tested using rational

arithmetic approach.
Test case 1 - Consider the following ill-condition linear system.

[ 0.5 0.5 ”x1] _ 1
0.50000000005 0.49999999995! |x, 1
Transformed into rational Format, we get

1 1 1
2 2 [xl] it
10000000001 9999999999 |lx,] %

20000000000 20000000000
Results:

Computed k(A) = 2.0x10%°, residual r=0and A - A" = 0.

The solution vector x is an exact [1, 1]".

Table 1 shows the behavior of ill-conditioned linear equations and how far off the
inv(A) using floating point from the actual values even thought the solution vector
X in both modes are equal.

Table 1. Comparison of the results rational model vs. floating point model

| Rational (R) | Float (F) | Errore = |R—F|
Solution vector X = [x1, 2]
X1 1 1.0 0
X2 1 1.0 0
inv(A)= A
an -9999999999 -9.9999991715963593e+09 | 827.4036407470703

a1z 10000000000 9.9999991725963593e+09 | 827.4036407470703

azi 10000000001 9.9999991735963593e+09 | 827.4036407470703

a2 -10000000000 -9.9999991725963593e+09 | 827.4036407470703

An Alternative Approach for Solving Ill-conditioned Systems of Linear Equations
Test case 2 - Consider the ill-condition linear system.

—5046135670319638 —3871391041510136 —5206336348183639 —6745986988231149

—640032173419322 8694411469684959 —564323984386760  —2807912511823001
—16935782447203334 —1875242753803772  —8188807358110413 —14820968618548534

—1069537498856711 —14079150289610606 7074216604373039 7257960283978710

Results:
Computed k(A) = 71.31and residual r=0and A- A'=0.
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The computed solution vector X is an exact.

950774706986633557652207357646313604657150960202

x1= 1430715732975754194355660794164899374417975097483114725160500001
)= 348452193980609970902537236435835289516685977855

xe= 1430715732975754194355660794164899374417975097483114725160500001
3= 1895406150668745860323303651370268200443938402887

X " 1430715732975754194355660794164899374417975097483114725160500001
A 2186126530734990466003691011697825858819452952110

X4 =

© 1430715732975754194355660794164899374417975097483114725160500001
The computed inverse At

630378158973611584495870444217721066472876895710
1430715732975754194355660794164899374417975097483114725160500001

a;; =

465813558353997976529338004708078722470680732178
1430715732975754194355660794164899374417975097483114725160500001

299648478948293336663855965638805206523414953537
1430715732975754194355660794164899374417975097483114725160500001

a3 =

154231468607317333290854874359319022237008285851
 1430715732975754194355660794164899374417975097483114725160500001

A14

253623748449507662196235226534804046831714618117
1430715732975754194355660794164899374417975097483114725160500001

84344151693954129924885338033606051194207856713

© 1430715732975754194355660794164899374417975097483114725160500001
84772179201932005389050837299309974525922101809

B 1430715732975754194355660794164899374417975097483114725160500001

azs

95256473039080184170467509166735166016685604834
1430715732975754194355660794164899374417975097483114725160500001

Ay =

684904080495976114020497106271301778477685883242
© 1430715732975754194355660794164899374417975097483114725160500001

asq
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1010588511299918762149886875127100045636049005080

32 = 1430715732975754194355660794164899374417975097483114725160500001
272070873382825871333866179796018712926672847377
3 :-_1430715732975754194355660794164899374417975097483114725160500001
471984432255676855486785849767885089256876361942
3 = 1430715732975754194355660794164899374417975097483114725160500001
1066656926697323112804505295050570899234291897743
= © 1430715732975754194355660794164899374417975097483114725160500001
1079974350885125908759750916757611997944716331884
2 =_1430715732975754194355660794164899374417975097483114725160500001
385469628826436250024532457584760971720670466265
s = 1430715732975754194355660794164899374417975097483114725160500001
. 424964881978977694463967257474403933361115188748
44 =

© 1430715732975754194355660794164899374417975097483114725160500001

Test case 3 - Solving the famous ill-conditioned (Hilbert matrix) Ax=b, where A

iS N X N matrix.
1 n 1

Qi = b, = Y
U™ jtj-1" 1 J=1iyj—1

fori,j=1..n

Results:

The computed solution vector x is an exact. Solution vector x = {xi = 1, for i = 1...
n}. Table 2 shows the condition number k(A) and the residual r for different value
for n of Hilbert matrix.

Table 2. Condition number and residual.

n K(A) = [|A|l||AY| r=b-4x | 1=AAT [A-A=0
10 11235421822540 0 N N
20 ~ 1.580695807900064x 108 0 N N
30 ~2.6149750373614254x10% 0 N N
50 ~ 8.459678377949566x10"3 0 N N
100 ~2.157356948719007x 10 0 N N
200 ~1.957046806156672x10%% 0 N N
300 ~2.059474534375262x10% 0 N N
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