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Abstract 

 
In this study, the auxiliary equation method was applied to find the exact solutions 

with parameters of the general nonlinear dynamical system of a new double-chain 

model of DNA. When the parameters are assigned special values, the solitary wave 

solutions were derived from the exact solutions. Comparison between our results 

and the well-known results is given. 
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ص لخالمست  
ف فشلبحل فهذش فيطبتفتاري فشلمج  نة فشلمع نلد فطا قد ففلإيع ن  فلمتظومد فشلت مد ف طضدففنيت مضكضدشلحلوج غيا

فل فشلجلجلد فثت  ي ففييلتموذج ف DNAأ فإنن  ف تنم  فقضم  ففأ طي . ففشلب امتاش  فأ  صد, فشلحلوجف جتتتتا ج
ف. لتت  جفشلمعاوردفج بق  فبتت  عت فريفهذشفشلبحلففدق اتمفتم وريفشلته ضدفف.تضهفللحلوجفشلت مدوفوتشلجل

  ف

 

Introduction 
 

The investigation of the traveling wave solutions of nonlinear partial differential 

equations plays an important role in the study of a nonlinear physical phenomena.    
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Nonlinear wave phenomena appears in various scientific and engineering fields,  

such as fluid mechanics, plasma physics, optical fibers, biology, solid state 

physics, chemical kinematics, chemical physics and geochemistry.  

Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and 

convection are very important in nonlinear wave equations.In recent years, new 

exact solutions may help us to find new phenomena. A variety of powerful 

methods can be used, such as the inverse scattering method [2], the Hirota bilinear 

transformation [10], the exp-function method [23,33,5], the tanh-function method 

[1,7,34], the Jacobi elliptic function expansion method [6,14,15], the '( )G
G

-

expansion method [19,25,29,32,36], the modified '( )G
G

-expansion method [36], the

' 1( , )G
G G

-expansion method [13,26,27,28], the multiple exp-function algorithm 

method [17], the transformed rational function method [16], and the modified 

simple equation method [11,24]. An attractive nonlinear model for the nonlinear 

science is the deoxyribonucleic acid (DNA). The dynamics of DNA molecules is 

one of the most fascinating problems of modern biophysics because it touches the 

basis of life. The DNA structure has been studied during last decades. The 

investigation of DNA dynamics has successfully predicted the appearance of 

important nonlinear structures. It has been shown that the nonlinearity is 

responsible for forming localized waves. These localized waves are interesting 

because they have the capability to transport energy without dissipation 

[3,4,8,9,12,18,20,21,22,30,31]. In Aka et al. [4,30] and Zayed and Arnous [31], it 

is given that a new double-chain model of DNA consists of two long elastic 

homogeneous strands which represent two polynucleotide chains of the DNA 

molecule, connected with each other by an elastic membrane representing the 

hydrogen bonds between the base pair of the two chains. Under some appropriate 

approximation, the new double-chain model of DNA can be described by the 

following two general nonlinear dynamical system: 

 

                               
2 3 2

,1 1 1 1 1u c u u uv u uvtt xx                                                 (1) 

                           
2 2 2 3

,2 2 2 2 2 0v c v v u u v v ctt xx                                          (2)  
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where  ,  , Y  and F  denote respectively the mass density, the area of transverse 

cross-section, the Young’s modulus and the tension density of each strand;   is 

the rigidity of the elastic membrane; h  is the distance between the two strands, and 

0l is the height of the membrane in the equilibrium position. In Eqs. (1) and (2), u

is the difference of the longitudinal displacements of the bottom and top strands, 

while v is the difference of the transverse displacements of the bottom and top 

strands. 

The objective of this paper is to apply the auxiliary equation method to find the 

exact traveling wave solutions of the dynamical system (1) and (2).  

 
Description of the Auxiliary Equation Method 

 

Consider the following nonlinear evolution equation: 

 

                                            
( , , , , , , ...) 0,E u u u u u ux xxt tt xt                                         (4) 

 

where E is a polynomial  in ( , )u x t and  its partial derivatives in which the highest 

order derivatives and nonlinear terms are involved.  In the following, we give the 

main steps of this method [37] 

 

Step 1. We use the wave transformation: 

 

                            ( , ) ( ),u x t u 
   

,kx t                                                              (5) 

 

where k and   are constants, to reduce Eq. (4) to the ODE: 

  

                                       ( , , , ...) 0,P u u u                                                                  (6) 

 

 

where P is a polynomial  in ( )u  and its total derivatives, such that ' /d d , i.e. the 

prime notation in Eq. (6) denotes differentiation with respect to   . 

 

Step 2. We assume that the solution of (6) has the form: 

 
2

0

( ) ( ),
M

i

i

i

u a F 


                                                                     (7) 
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where (i 0,1, 2, ..., 2 )a M
i

  are constants to be determined, such that 02a M  . The 

function ( )F   satisfies the auxiliary equation 

                                  

                                    2 2 4 6
( ) ( ) ( ) ( ),F pF qF sF                                                (8) 

 

where , ,p q s  are  constants.  Eq. (8) admits several types of solutions [37]: 

 

Table1. Solutions of Eq. (8) with 2
4q ps   and 1   . 

NO                          ( )F   NO                          ( )F   

1.

1

22sech ( )

22 1 tanh ( )

pq p

q ps p



 

 
 
 
   

  

    ,  0p   

2.

1

22csch ( )

22 1 coth ( )

pq p

q ps p



 

 
 
 
   

  

    ,  0p   

3. 

1

22

cosh (2 )

p

q p 

 
 
    

    ,  0p  , 0   

4. 

1

22

cos(2 )

p

q p 

 
 
     

    ,  0p  , 0   

 

5. 

1

22

sinh (2 )

p

q p 

 
 
    

    ,  0p  , 0   

6. 

1

22

sin (2 )

p

q p 

 
 
     

    ,  0p  , 0   

7.

1
2 2sech ( )

2 tanh( )

p p

q ps p



 

 
 
  

    ,  0p  , 0s   

8. 

1
2 2sec ( )

2 tan ( )

p p

q ps p



 

  
 
    

    ,  0p  , 0s   

9. 

1
2 2csch ( )

2 coth( )

p p

q ps p



 

 
 
  

    ,  0p  , 0s   

10. 

1
2 2csc ( )

2 cot ( )

p p

q ps p



 

  
 
    

  ,  0p  , 0s   

11.  

1

2
1 tanh ( )

p
p

q
 

 
   

 
    ,  0p  , 0   

12.  

1

2
1 coth ( )

p
p

q
 

 
   

 
    ,  0p  , 0   

13.  

1

2

2
4

2
2 4 64

ppe

pe q ps





 
 
 
 
  

   
  

    ,  0p   

14.    

1

22
4

41 64

ppe

ppse





 
 

   

    ,  0p  , 0q   

 

Step 3. We determine the positive integer M in (7) by balancing the highest order 

derivatives and the nonlinear terms in (6).  
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Step  4.  We substitute (7)  along with  Eq. (8)  into  Eq. (6)  and  collecting  all 

the terms  of the same power ( )F  and  equating them to zero, we obtain a system 

of algebraic equations, which can be solved by Maple or Mathematica to get the 

values of a
i

, k  and  . 

 

Step  5.  Substituting  these  values  and  the solutions  of Eq. (8)  into  (7)  we 

have  the exact solutions of Eq.  (4). 

 

Application 

 

In this section, we will apply the proposed method described above, to find the 

exact solutions of the dynamical system (1) and (2). To this end, we first introduce 

the transformation: 

                                                 
v au b  ,                                                              (9) 

 

where a and b are constants, to reduce Eqs. (1) and (2) to the following system of 

equations: 

 
2 3 2 2 2

( ) (2 ) ( ),1 1 1 1 1 1 1 1u c u u a u ab a u b bxxtt                                      (10) 

 

and 

                  
3

2 3 2 2 22 2 2 2 0( ) ( 3 ) ( 3 ) ,2 2 2 2 2 2

b b b c
u c u u a u ab u bxxtt a a a a a

   
                 (11) 

 

Comparing  Eqs. (9) and (10) and using (3) we deduce that 
2

h
b  and F Y . Now 

Eqs. (9) and (10) can be re-written as 

                                               
2 3 2

0,1u c u Au Bu Cuxxtt                                     (12) 

 

where 

               
22 4

;
3 3

a
A

h h

  
  
 
 

 
6 2

;
2

a
B

h




 
2 6

;
0

C
l h

  
   
   

0 ;
l




  2
1

Y
c


 .                 

(13) 

 

The wave transformation (5) of Sec. 2, reduces Eq. (12) to the following ODE: 

 

                                   
2 2 2 3 2

( ) 0,
1

k c u Au Bu Cu                                              (14) 
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where 
2 2 2

0
1

k c   . Balancing u  with 3
u  yields M . where M is the balance 

indicated in step 3. Consequently, we have the formal solution: 

 

                                       
2

( ) ( ) ( )
0 1 2

u a a F a F        ,                                           (15) 

 

where ,
0 1

a a and 
2

a  are constants to be determined. Substituting (15) along with 

equation (8) into (14) and setting the coefficients of ( )
i

F  (i 0,1, 2, ..., 2 )M to zero 

yields a set of algebraic equations for ,
0 1

a a , 
2

a , k and   as follows:  

 

 6 2 2 2 3: 8 0,2 1 2
F sa k c Aa     

 5 2 2 2 2: 3 3 0,1 11 2
F sa k c Aa a     

   4 2 2 2 2 2 2 2: 6 2 2 0,2 0 2 2 0 21 2 2 1 1
F qa k c Ba A a a a a a a a a         

 
 

   3 2 2 2 2: 2 2 4 2 0,1 1 0 2 0 1 2 1 21 1
F qa k c A a a a a a a a Ba a        

 
 

     2 2 2 2 2 2 2 2: 4 2 2 2 0,2 2 0 2 0 0 2 0 21 1 0 1 1
F pa k c Ca A a a a a a a a a B a a a           

 
 

 2 2 2 2: 2 3 0,1 1 0 1 11 0
F pa k c Ba a Ca Aa a       

0 3 2: 0.00 0
F Aa Ba Ca     

 

On solving the above algebraic equations using the Maple or Mathematica, we get 

the following result: 

 

         

2 2 243 810, 0, , , , .
0 1 2 22 4 9

C pk cCq psB
a a a k k A

Bp p q C



                          (16) 

 

Form (15), (16) and Table.1, we deduce the traveling wave solutions of Eq. (14) as 

follows: 

 

                
2 23 sech ( )

( )
1 22 2 1 tanh ( )

Cq p
u

B
q ps p




 

 
 

   
   

  

    ,  0p                                       (17) 

                
2 23 csch ( )

( )
2 22 2 1 coth ( )

Cq p
u

B
q ps p




 

 
 

  
   

  

    ,  0p                                        (18)  
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3 1

( )
3 cosh(2 )

Cq
u

B q p


 

 
 
    

    ,  0p  , 0                                       (19) 

              

3 1
( )

4 cos(2 )

Cq
u

B q p


 

 
 
     

    ,  0p  , 0                                     (20) 

              

3 1
( )

5 sinh(2 )

Cq
u

B q p


 

 
 
    

    ,  0p  , 0                                    (21) 

              

3 1
( )

6 sin(2 )

Cq
u

B q p


 

 
 
     

    ,  0p  , 0                                     (22) 

              
23 sech ( )

( )
7 2 2 tanh ( )

Cq p
u

B q ps p




 

 
 
  

     ,  0p   , 0s                                  (23) 

              
23 sec ( )

( )
8 2 2 tan ( )

Cq p
u

B q ps p




 

 
 
    

     ,  0p   , 0s                                 (24) 

             

23 csch ( )
( )

9 2 2 coth ( )

Cq p
u

B q ps p




 

 
 
  

    ,  0p   , 0s                                       (25) 

             
23 csc ( )

( )
10 2 2 cot( )

Cq p
u

B q ps p




 

 
 
    

     ,  0p   , 0s                                 (26) 

             
 

3
( ) 1 tanh ( )

11 2

C
u p

B
        ,  0p  , 0                                             (27) 

             
 

3
( ) 1 coth ( )

12 2

C
u p

B
        ,  0p  , 0                                             (28) 

            

224
( )

13 2
2 4 64

pCq e
u

B
pe q ps






 
 
 

  
  

   
  

    ,  0p  .                                         (29) 

 

Physical Explanations of Some Obtained Solutions 

 

Here, we present some graphs of the obtained solutions constructed by taking 

suitable values of involved unknown parameters to visualize the underlying 

mechanism of the original equation. Using the mathematical software Maple, 

three-dimensional plots of some obtained exact solutions have been shown (Figs. 

1-4). The obtained solutions for the nonlinear PDE (12) incorporate three types of 

explicit solutions namely, hyperbolic, trigonometric and rational. From these 

explicit results, it is easy to say that the solution (27) is a kink shaped soliton 

solution;  the solution (19)  is a bell shaped soliton solution;  the solution  (21) is a  
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Fig.1. Plot of solution (17) when  𝑝 = 1, 𝑞 = 2, 𝑠 =
1

2
, 𝐶 = 1, 𝐵 = 1, 𝑐1 = 1, 𝑘 = 1. 

 

 

Fig.2.  Plot of solution (19) when 𝑝 = 1, 𝑞 = 2, 𝑠 =
1

2
, 𝐶 = 1, 𝐵 = 1, 𝑐1 = 1, 𝑘 = 1. 
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Fig. 3. Plot of solution (24) when 𝑝 = −1, 𝑞 = 2, 𝑠 = 1, 𝐶 = 2, 𝐵 = 2, 𝑐1 =
√6

2
, 𝑘 =

1.  

 
Fig. 4.  Plot of solution (27) when 𝑝 = 1, 𝐶 = 2, 𝐵 = 1, 𝑐1 = 1, 𝑘 = 1.  
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singular bell  shaped  soliton  solution; the  solution (28) is a singular kink  shaped 

soliton solution; the solutions (17) and (23) are bell-kink shaped soliton solutions; 

the solution (18) and (25) are  singular bell-kink shaped soliton solutions, the 

solutions (20), (22), (24), (26) are periodic solutions and the solution (29) is 

rational solution. The graphical representation of the solutions (17), (19), (24) and 

(27) can be plotted as shown (Figs. 1 to 4).   

 
Conclusions 

 

The  auxiliary equation method described earlier in this study has been applied to 

construct many new exact solutions of the general nonlinear dynamical system (1) 

and (2) which describes the new double-chain model of DNA with the aid of 

Maple. On comparing our results obtained in the Application section above, with 

the results obtained in [4,30] using the improved generalized Riccati equation 

mapping method and the Riccati parameterized factorization method respectively, 

we conclude that our results are new and not published elsewhere. In last section, 

above, we presented some graphs of some exact solutions discussed in the 

Application section by choosing suitable values of parameters. Also we deduce 

that the auxiliary equation method used in this study is direct, effective and can be 

applied to many other nonlinear PDEs.  Finally, all solutions obtained here have 

been checked with the Maple 14 by putting them back into the original equation. 
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