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Abstract 

 
Three methods of estimation of the two-parameter Weibull distribution were 

compared. A computer program was used to generate random data which was 

then used to get the desired estimates. The methods are: the graphical method, the 

maximum likelihood method and Menon’s method. Three sample sizes and two 

sets of parameter values were used. The estimates were then compared on the 

basis of their mean square errors. 
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 المستخلص
شلثت  يفشلب امتا.فوقنفتافشجتعم جفبات مجفح جودففWeibullتم فمق اتدفثدلفطاقفلتقنيافتو   فوأيبوجف

شلبض ت  فشلعةوش ضدفشلتيفشجتعمل فبعنفذلكفريفشلحصوجف ل فشلتقنياش فشلمطلوبد.فوشلطاقفشلمجتعملدففلإتت ج
ف فمتون فوطا قد فشمك تضد فأقص  فوطا قد فشلبض تضد فشلطا قد ف يت  فف شجتعم لف.Menonهي: فأحع ا ثدثد

فومعمو تيفب امتاش فحيلفأ قدفذلكفشلمق اتدفبيته فب جتعم جفمتوجطفماس فشلا ط ل.
 

Introduction 

 

Weibull distribution has been used widely in analysing life-tests using time to 

failure distributions.  The family of Weibull distribution is considered as a sub-

family within the group of ‘’extreme value’’ distributions. The Weibull 

distribution is closely related to the exponential distribution with more parameters.   
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However, in the exponential distribution we get only a single constant failure rate 

λ  where in the Weibull model, a variety of hazard situations can be treated.  So, 

the reliability function 𝑅(𝑡) of the exponential distribution, the probability that 

failure occurs after time 𝑡, is given by: 

 

𝑅(𝑡) =  exp (−λt),     𝑡 ≥ 0       (1) 

 

Put λ = 
1

𝛿
 and  replace 𝑡 by 𝑡 − 𝜇  gives  λt = 

𝑡−𝜇

𝛿
 , 𝑡 ≥ 𝜇, and by inserting 𝛽 as a 

power, the reliability function of the three-parameter Weibull distribution is: 

 

 𝑅(𝑡) =  𝑒𝑥𝑝 [− {
𝑡−𝜇

𝛿
}
𝛽

],     𝑡 ≥ 𝜇.               (2) 

 

Where the parameter 𝜇 is the location parameter, 𝛿 is the scale parameter, and 𝛽 is 

the shape parameter.  Clearly 𝜇 is the smallest value that the observations can 

assume and the time of failure cannot occur before time 𝜇.   

The Weibull distribution function is given by: 

 

          𝐹(𝑡) = 1 −  𝑒𝑥𝑝 [− {
𝑡−𝜇

𝛿
}
𝛽

],       𝛽 > 0,  𝑡 ≥ 0,  𝜇 ≥0,  𝛿 > 0.    (3) 

 

The Weibull probability density function is: 

 

𝑓(𝑡) =  
𝛽

𝛿
{
𝑡−µ

𝛿
}
𝛽−1

𝑒𝑥𝑝 [− {
𝑡−𝜇

𝛿
}
𝛽

]     (4) 

 

However, the probability density function of the two-parameter (𝛽 and 𝛿)is: 

 

𝑓(𝑡) =  
𝛽 𝑡𝛽−1

𝛿𝛽 𝑒𝑥𝑝 [− {
𝑡

𝛿
}
𝛽

]    (5)     

 

If 𝛽 = 1, this gives the exponential probability density function (PDF). For 

different values of 𝛽,  the Weibull distribution has many different shapes. The 

failure rate, ℎ(𝑡), is defined as the ratio of the PDF to the reliability function. So, 
 

ℎ(𝑡) =
𝛽 𝑡𝛽−1

𝛿𝛽
,                                     (6)  
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The graph of the hazard function has many different shapes.  The hazard decreases 

with time for 𝛽 < 1, is constant for 𝛽 = 1, increasing linearly for 𝛽 = 2,  and for  

𝛽 > 2,  the failure rate increases faster as the time increases.  

  

Methods of Parameter Estimation 

 

Many authors have studied the estimates of the Weibull parameters following 

many different methods where the maximum likelihood method was one of the 

most important methods. Cohen (1965) used it for complete, singly censored, and 

progressively censored samples. Lemon (1975) used it with left and right 

progressive censoring. Dubey (1960, 1967) used some percentile estimators and 

compared them to the maximum likelihood estimators. In the percentile estimation 

technique, an explicit estimator for 𝛽 can be found. Moments is also another 

estimation method, where the first 3 moments are required to construct three 

equations to be solved for 𝛽,  𝛿, and  𝜇 to obtain their estimates.  

The best linear unbiased estimator (BLUE) and the best linear invariant 

estimator (BLIE) were also used to estimate Weibull parameters (Mann, 1967, 

1971).  The BLIE method involves weighting the ordered observations and using 

censored samples.  For large samples, this approach needs to divide the unordered 

samples randomly into sub-samples of small size and to obtain the BLUE for each 

sub-sample. Then one calculates an optimum weighted average which 

approximates a BLUE for the entire sample.   

These methods are considered as traditional estimation techniques. Recently, 

two new methods were developed for the same problem, namely, the entropy 

(Singh, 1987), and the use of the probability weighted moments (Greenwood et 

al., 1979).  Singh et al. (1990), evaluated these techniques on the basis of their 

relative performance in terms of variability, robustness and bias. However, more 

recently,  Weibull distribution became one of the most commonly used 

distribution to determine wind energy potential. Seguro and Lamber (2000) used 

Weibull wind speed distribution to estimate the parameters. They presented a 

modified maximum likelihood method which was recommended if the wind data 

is in a frequency format.  If the data is in a time series format they recommended 

the maximum likelihood method.  Akdag and Dinler (2009) used the mean of 

wind speed to formulate the energy pattern factor. Weibull parameters were 

estimated  by  solving  the  energy  pattern  factor  numerically or  using a simple 

formula for power density (PD) method. In this method the parameters can be 

estimated provided that the power density and mean wind speed are available.  

In this work, the three considered methods were: the graphical method, the 

maximum likelihood method and the Menon’s method. 
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The Graphical Method 

 

This method used the idea of linear regression. It was studied by Kao (1959, 

1960). Thus, 

 

𝑅(𝑡) = 𝑒𝑥𝑝 [− {
𝑡

𝛿
}
𝛽

], 

 

Therefore,  

 

1

𝑅(𝑡)
= 𝑒𝑥𝑝 [{

𝑡

𝛿
}
𝛽

], and 

 

ln 𝑙𝑛
1

𝑅(𝑡)
= 𝛽 ln 𝑡 − 𝛽 ln 𝛿     (7) 

 

This is a linear equation which can be plotted as a straight line on a ‘’log-log 

versus log’’ graph paper.  The linear equation is of the form: 𝑦 = 𝑎𝑥 + 𝑏,  where 

 

𝑦 = ln ln
1

𝑅(𝑡)
,    𝑥 = ln 𝑡,    𝑏 = −𝛽 ln 𝛿,       and       𝑎 = 𝛽. 

 

The estimates of the two parameters 𝛽 and 𝛿 can be obtained by fitting a 

straight line to the data.  The slope of the line provides an estimate of 𝛽 and the 

intercept can then be used to estimate 𝛿.  The observations are arranged in order so 

that 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛. Doris (1989) uses the result 𝐸(𝑅(𝑡𝑖)) =
𝑛+1−𝑖

𝑛+1
. Then 𝑅(𝑡𝑖) 

can be estimated as �̂�(𝑡𝑖) =
𝑛+1−𝑖

𝑛+1
. This gives 𝑦𝑖 = 𝑙𝑛𝑙𝑛

𝑛+1

𝑛+1−𝑖
, as the vertical 

coordinate, and 𝑥𝑖 = ln (𝑡𝑖) as the horizontal coordinate. The 𝑛 points (𝑥𝑖, 𝑦𝑖) were 

plotted and a straight line was fitted to them. The parameters were obtained from 

the slope and the intercept of the fitted line. Thus, the required formulas: 
 

 

𝛽 ̂1 = 
∑ [ln(𝑡𝑖)−ln (𝑡)̅̅ ̅̅ ̅̅ ̅]𝑦𝑖

𝑛
𝑖=1

∑ [ln(𝑡𝑖)−ln (𝑡)̅̅ ̅̅ ̅̅ ̅]
2𝑛

𝑖=1

,           (8a) 

 

       𝛿1 = 𝑒𝑥𝑝 [ln(𝑡)̅̅ ̅̅ ̅̅ −
�̅�

𝛽 ̂1
]           (8b) 

 

In getting equations (8a) and (8b), 𝑦𝑖 = ln ln
1

𝑅(𝑡𝑖)
 was used as the dependent 

variable and 𝑥𝑖 = ln (𝑡𝑖) as the independent variable.   However, the 𝑦𝑖 were fixed  
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and the 𝑥𝑖 were random variables. Therefore, switch the variables to get an 

alternative linear equation  

 

 ln(𝑡) =  
1

𝛽
ln ln

1

𝑅(𝑡)
+ ln 𝛿.            (9) 

 

Again, the fitting of this equation will provide estimates of 𝛽 and 𝛿.  The required 

formulas are: 

�̂�2 =
∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)𝑛
𝑖=1 ln (𝑡𝑖)

,        (10a) 

 

𝛿2 = 𝑒𝑥𝑝 [ln(𝑡)̅̅ ̅̅ ̅̅ −
�̅�

𝛽 ̂2
].      (10b) 

 

In place of 𝐸(𝑅(𝑡𝑖)),  one can also use the median of 𝑅(𝑡𝑖).  While an exact 

calculation of the median of 𝑅(𝑡𝑖) is difficult, an approximation by Kenneth 

(2011) is available, namely, �̂�(𝑡𝑖) =
𝑛+0.7−𝑖

𝑛+0.4
.  This gives 𝑦𝑖 = ln ln

𝑛+0.4

𝑛+0.7−𝑖
 . With 

this change, one can obtain two more sets of estimates by using (8a), (8b), (10a), 

and (10b).  

The above discussion assumes that the value of 𝜇 for the three-parameter 

distribution is known.  If it is unknown, then the graphical method can still be 

used. Clearly, one has to use 𝑥𝑖 = ln(𝑡𝑖 − �̂�) where �̂� is a preliminary estimate.  

The points (𝑥𝑖, 𝑦𝑖) were plotted as shown above.  The trial and error method of 

selecting   �̂�   requires  increasing   the  estimate  if  the  curve  plotted  is  concave  

upward, and decreasing it if the curve is concave downward, until one gets a 

straight line.  Once �̂� is obtained, the above method can be used to estimate 𝛽 and 

𝛿.  

 

The Maximum Likelihood Method 

 

The density of the two-parameter Weibull distribution is written by Cohen 

(1965) as follows: 

 

𝑓(𝑡) =  
𝛽 

𝜃
 𝑡𝛽−1𝑒𝑥𝑝 [−

𝑡𝛽

𝜃
],       𝑡 > 0, 𝜃 > 0, 𝛽 > 0,         (11) 

 

Where the scale parameter 𝛿 is written as 𝜃
1

𝛽. This particular form of the density 

was chosen  for the purpose of  simplifying derivation of  the maximum likelihood  
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estimating equations. Consider a random sample of n observations from a 

distribution whose density function is given by (11). The likelihood function is: 
 

 

𝐿(𝛽, 𝜃, 𝑡1, 𝑡2, ⋯ , 𝑡𝑛) = ∏ {(
𝛽

𝜃
) 𝑡𝑖

𝛽−1
𝑒𝑥𝑝 [−

𝑡𝑖
𝛽

𝜃
]}𝑛

𝑖=1 .   (12) 

 

Taking logarithms in (12), differentiating partially with respect to 𝛽 and 𝜃 and 

equating the result to zero, we get 

 
𝜕 ln𝐿

𝜕𝛽
=

𝑛

𝛽
+ ∑ ln 𝑡𝑖 −

1

𝜃
∑ 𝑡𝑖

𝛽
ln 𝑡𝑖 = 0,𝑛

𝑖=1
𝑛
𝑖=1       (13) 

      
𝜕 ln𝐿

𝜕𝜃
=

−𝑛

𝜃
+

1

𝜃2
∑ 𝑡𝑖

𝛽
= 0𝑛

𝑖=1 .     (14) 

 

After eliminating 𝜃 from these two equations and simplifying, we get 

 

 
∑ 𝑡𝑖

𝛽
𝑙𝑛𝑡𝑖

𝑛
𝑖=1

∑ 𝑡
𝑖
𝛽𝑛

𝑖=1

−
1

𝛽
−

1

𝑛
∑ ln 𝑡𝑖 = 0𝑛

𝑖=1 ,   (15)  

 

To solve equation (15), use the Newton-Raphson Procedure. So, let  

 

𝑔(𝛽) = ∑ 𝑡𝑖
𝛽

ln 𝑡𝑖 −
1

𝛽
 ∑ 𝑡𝑖

𝛽
−

1

𝑛

𝑛
𝑖=1  ∑ ln 𝑡𝑖 ∑ 𝑡𝑖

𝛽𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1    (16) 

 

Equation (15) is then equivalent to the equation 𝑔(𝛽) = 0. This equation has a 

unique solution; see Lehmann (1983, p. 437). It is easy to see that 

 

𝑔′(𝛽) = ∑ 𝑡𝑖
𝛽(ln 𝑡𝑖)

2 +
1

β2  ∑ 𝑡𝑖
𝛽
 𝑛

𝑖=1  𝑛
𝑖=1   

                                −
1

𝛽
∑ ti

β
ln 𝑡𝑖 −

1

𝑛
∑ ln 𝑡𝑖

𝑛
𝑖=1 ∑ 𝑡𝑖

𝛽
ln 𝑡𝑖

𝑛
𝑖=1

𝑛
𝑖=1   (17) 

 

We started with a good guess  𝛽0 for  𝛽 which might, for instance, be an 

estimate obtained by the graphical method.  Then, calculate the correction ∆=

−
𝑔(𝛽0)

𝑔′(𝛽0)
, which yields a revised estimate 𝛽1 = 𝛽0 + ∆.  The next iteration used 

𝛽1 to calculate another correction ∆.  This process is repeated until ∆ became very 

small.  The last value of  𝛽 is the required estimate �̂� which allows estimating 𝜃 

from (14) as:  

 

𝜃 =  ∑
𝑡𝑖
�̂�

𝑛

𝑛
𝑖=1 ,  and finally,     �̂� =  (𝜃)

1

�̂�. 
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Menon’s Method 

 

Menon (1963) gave the following formulas for estimating the shape and the 

scale parameters of the Weibull distribution. 

  �̂� = [(
6

𝜋2) {∑ (ln ti)
2 −

1

𝑛
(∑ ln 𝑡𝑖

𝑛
𝑖=1 )2𝑛

𝑖=1 } /(𝑛 − 1)]

−1

2
 ,   (18) 

 

 𝛿 = 𝑒𝑥𝑝 [
1

𝑛
∑ ln 𝑡𝑖 +

𝛾

�̂�

𝑛
𝑖=1 ],      (19) 

 

Where 𝛾  is Euler’s constant. The rationale behind these formulae was as 

follows.  Suppose that T has the Weibull probability density function given by (5).  

Using the fact that the distribution of 𝑊 = (𝑇/𝛿)𝛽 is independent of both  𝛽  and 

𝛿 and has the PDF 

 

{
𝑒−𝑡,                    𝑡 ≥ 0,        
0,                        𝑡 < 0,       

    

 

Then,   𝑣𝑎𝑟(ln𝑊) = 𝐸[(ln𝑊)2] − [𝐸(ln𝑊)]2 

 

= ∫ 𝑒−𝑡(ln 𝑡)2𝑑𝑡 − [∫ 𝑒−𝑡
∞

0

ln 𝑡𝑑𝑡 ]

2∞

0

 

 

It is known that   Γ(𝑝) = ∫ 𝑡𝑝−1∞

0
𝑒−𝑡𝑑𝑡,  

 

So,  Γ′(𝑝) = ∫ 𝑡𝑝−1∞

0
𝑒−𝑡 ln 𝑡 𝑑𝑡, 

 

And the higher derivations have similar expressions.  Thus, 

 

Γ′(1) = ∫ 𝑒−𝑡∞

0
ln 𝑡 𝑑𝑡, 

Γ′′(1) = ∫ 𝑒−𝑡
∞

0

(ln 𝑡)2𝑑𝑡 

 

Therefore,  𝑣𝑎𝑟(ln𝑊) = Γ′′(1) − [Γ′(1)]2 

 

Define Ψ(𝑝) =
Γ′(𝑝)

Γ(𝑝)
. Then it is clear that 

 

Ψ′(1) = Γ′′(1) − [Γ′(1)]2 
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Therefore, 𝑣𝑎𝑟(𝑙𝑛 𝑊) = Ψ′(1). 
 

It can be shown that,      Ψ′(𝑝) = ∑
1

(𝑝+𝑘)2
∞
𝑘=0 . 

 

Therefore,         Ψ′(1) = ∑
1

(1+𝑘)2
∞
𝑘=0 = ∑

1

𝑘2
∞
𝑘=1 =

𝜋2

6
. 

 

Thus,       𝑣𝑎𝑟(ln𝑊) =
𝜋2

6
. 

 

Now, 𝑣𝑎𝑟(ln𝑊) = 𝛽2𝑣𝑎𝑟(ln 𝑇), and so, 
1

𝛽2 =
𝑣𝑎𝑟(ln𝑇)

𝑣𝑎𝑟(ln𝑊)
=

6

𝜋2 𝑣𝑎𝑟(ln 𝑇).  

 

Then, 𝑣𝑎𝑟(ln 𝑇) can be estimated by 
 

1

𝑛 − 1
[∑(ln 𝑡𝑖)

2 −
1

𝑛
(∑ln 𝑡𝑖

𝑛

𝑖=1

)

2𝑛

𝑖=1

] 

 

This gives �̂� as in (18).  To justify (19), write 𝜆1 = Γ′(1).  Then 

𝜆1 = ∫ 𝑒−𝑡 ln 𝑡 𝑑𝑡 = 𝐸(ln𝑊).
∞

0

 

Further,    ln(𝑊) = 𝛽(ln 𝑇 − ln 𝛿). 
Taking expectations, then   𝐸(ln𝑊) = 𝛽[𝐸(ln 𝑇) − ln 𝛿].  

So, 𝜆1 = 𝛽[𝐸(ln 𝑇) − ln 𝛿],   and    ln 𝛿 = 𝐸(𝑙𝑛 𝑇) −
𝜆1

𝛽
. 

Now, 𝐸(ln 𝑇) can be estimated by   
1

𝑛
∑ ln 𝑡𝑖

𝑛
𝑖=1   and  �̂� is given by (18).  

Therefore, we get 

 

𝛿 = 𝑒𝑥𝑝 [
1

𝑛
∑ln 𝑡𝑖 −

𝜆1

�̂�

𝑛

𝑖=1

]. 

 

Since it is well known that 𝜆1 = −𝛾, formula (19) for 𝛿 is also justified. In 

essence, Menon’s method is just the method of moments applied to ln 𝑇. 
 

Simulation Study 

 

A large number of samples of observations were used to study the properties of 

the   various  estimates  for  the   parameters  of   the  Weibull  distribution.  These  
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observations were created by using a random number generator and converted 

from uniform (0,1) random variables X  to Weibull random variables T.  

The process starts by setting the values of the parameters at 𝛽 = 2.5 and 𝛿 = 40. 

And the sample sizes at 10, 30 and 60 with 5000 samples of each given size and 

then the estimates of  𝛽  and 𝛿 were calculated.  The values of the parameters were 

changed to 𝛽 = 4.0 and 𝛿 = 60 and the same process was repeated.  Finally, the 

averages of �̂�  and 𝛿 and their mean square errors were calculated.   The results 

were organized (Tables 1-6). In these tables, graph1 and graph2 used expected 

ranks while graph3 and graph4 used median ranks.  

 

Summary and Conclusion 

 

This work was concerned with estimating the parameters of the two-parameter 

Weibull distribution and comparing the results of three methods of estimation. 

Specifically, we compare the results of the graphical method (which yields four 

sets of estimates), the maximum likelihood method, and Menon’s method.   The 

study was carried out using computer simulation.  The estimates were calculated 

for 5000 samples using three sample sizes, and two sets of values for the 

parameters.  The results can be summarized as follows: 

 

(a) Estimation of 𝛽:  comparing the four graphical methods among themselves, 

we find that Graph2 gives the best overall results.  Indeed Graph2 shows the 

smallest MSE in four of the six tables.  A comparison of Graph2 with MLE.  

(b) shows that Graph2 gives better results in four out of six cases.  Moreover, 

Graph2 is better than Menon’s method in all cases.   Finally, the MLE 

performs better than Menon’s method in all cases. 

(c) Estimation of 𝛿:  Among the four graphical estimates, Graph4 is the best in all 

six cases.  This method is also better than the MLE in every case.  While 

Graph4 does better than Menon’s method in all cases, the latter is a very close 

second. Finally, Menon’s method performs better than the MLE in all cases. 

Overall, the recommendation would be to use the graphical method with ln 𝑡 as 

the dependent variable.  Whether one should use expected ranks or median ranks 

depends on the particular parameter being estimated. 
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Table 1. Estimates of �̂�, 𝛿 when 𝛽 = 2.5, 𝛿 = 40 and 𝑛 = 10. 

Method �̂� MSE 𝛿 MSE 

Graph1 2.16826 0.61274 41.14634 32.22774 

Graph2 2.34325 0.60495 40.31985 28.98757 

Graph3 2.41465 0.62365 40.59934 30.26144 

Graph4 2.61078 0.74159 39.85169 28.49849 

MLE 2.25575 0.59606 39.00353 30.37933 

Menon 2.88805 1.03031 39.83452 28.60007 

 

Table 2. Estimates of �̂�, 𝛿 when  𝛽 = 2.5, 𝛿 = 40 and 𝑛 = 30. 

Method �̂� MSE 𝛿 MSE 

Graph1 2.26665 0.23743 40.70539 10.90907 

Graph2 2.36484 0.20493 40.25156 9.77734 

Graph3 2.39858 0.21137 40.44557 10.40554 

Graph4 2.50056 0.21252 40.02770 9.68688 

MLE 2.31574 0.21735 41.75192 10.28313 

Menon 2.62521 0.25183 39.98303 9.79446 

 

Table 3. Estimates of �̂�, 𝛿 when  𝛽 = 2.5, 𝛿 = 40 and 𝑛 = 60. 

Method Average  �̂� MSE Average  𝛿 MSE 

Graph1 2.34017 0.12470 40.47874 5.34917 

Graph2 2.40449 0.10485 40.19720 4.88033 

Graph3 2.42779 0.10995 40.31235 5.14381 

Graph4 2.49201 0.10469 40.05281 4.83610 

MLE 2.37233 0.11303 38.64855 5.08889 

Menon 2.56914 0.11844 40.00487 4.87854 

 
 

Table 4. Estimates of �̂�, 𝛿 when 𝛽 = 4, 𝛿 = 60 and 𝑛 = 10 

Method �̂� MSE 𝛿 MSE 

Graph1 3.50287 1.57330 60.96162 27.30112 

Graph2 3.78933 1.62345 60.20712 25.24890 

Graph3 3.90030 1.63737 60.46074 26.13047 

Graph4 4.22272 2.03278 59.77011 25.18502 

MLE 3.64610 1.56209 55.77761 28.42441 

Menon 4.66788 2.80011 59.75307 25.30340 
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Table 5. Estimates of �̂�, 𝛿 when 𝛽 = 4 , 𝛿 = 60 and 𝑛 = 30. 

Method �̂� MSE 𝛿 MSE 

Graph1 3.63472 0.60539 60.60054 9.67728 

Graph2 3.79244 0.52066 60.17821 8.86132 

Graph3 3.84652 0.54208 60.35862 9.31684 

Graph4 4.00984 0.54396 59.96960 8.82781 

MLE 3.71358 0.55324 59.87639 9.65165 

Menon 4.20985 0.65082 59.92770 8.92202 

 

Table 6. Estimates of �̂�, 𝛿 when 𝛽 = 4, 𝛿 = 60 and 𝑛 = 60. 

Method �̂� MSE 𝛿 MSE 

Graph1 3.74345 0.32511 60.43938 4.67957 

Graph2 3.84702 0.27242 60.17437 4.29790 

Graph3 3.88372 0.28723 60.28357 4.51810 

Graph4 3.98692 0.27248 60.03949 4.27700 

MLE 3.79524 0.29425 59.37104 4.65716 

Menon 4.11008 0.30856 59.99522 4.32374 
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