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Abstract 
 

In this paper , the modified Kudryashov method was applied to construct the exact 

travelling wave solutions for some fifth order  nonlinear partial differential 

equations (PDEs), namely, the Kaup-Kupershmidt, the Ito, the Caudrey-Dodd-

Gibbon, the Lax and the Sawada-Kotera equations. 
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 المستخمص
  سه إساتةاس س بقتس اطق سس ا سشة سات  ةاةستبنن سدلة س ة ط س تداك ستن  ستبع سات عن  تساتت نالط س

سةس  طبةرس- ة -كة ا ةس سةتأطسةكةباش  ثس س-كةبست عن  سات  رط سغطاسات  ط س رساتاتب سات ن ح سةه 
سحةا اسكةتطاا.سة ساتا ة

 

Introduction 

In the last four decades or so , seeking exact solutions of nonlinear PDEs has 

been of great importance, since the nonlinear complex physical phenomena 

related to the nonlinear PDEs arise in many fields of physics, mechanics, biology, 

chemistry and engineering The investigation of exact solutions of nonlinear PDEs, 

as mathematical models of the phenomena, will help us to understand the 

mechanism that governs.  
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these physical models or provide better understanding of the problems and the 

possible applications. To these ends, a vast variety of powerful and direct methods 

for finding the exact significant solutions of nonlinear PDEs have been derived, 

such as the inverse scattering transform [1], the Hirota method [2], the truncated 

Painleve expansion method [4] , the Backlund transform method [1], the simplest 

equation method [6] , the Jacobi elliptic function method [7] , the tanh-function 

method [12], the modified simple equation method [3], the Kudryashov method 

[5,13,14], the multiple exp-function algorithm method [8] , the transformed 

rational function method [9], the Frobenius decomposition technique [10] , the 

local fractional variation iteration method [17] and the local fractional series 

expansion method [18] and so on. 

The objective of this paper is to demonstrate the efficiency of the modified 

Kudryashov method for finding exact solutions of some nonlinear evolution 

equations in the mathematical physics, namely,  the Kaup-Kupershmidt, the Ito, 

the Caudrey-Dodd-Gibbon, the Lax and the Sawada-Kotera equations. 

 

Description of the Modified Kudryashov Method 

 

Suppose we have a nonlinear evolution equation in the form 

 ( , , , ,...) 0t x xxF u u u u                                                                                (1)  

  

Where F  is polynomial in ( , )u x t and its partial derivatives in which the highest 

order derivatives and nonlinear terms are involved. In the following, we give the 

main steps of this method [11]:  

Step 1. Using the wave transformation 

( , ) ( ),      u x t u kx t                                                                          (2) 

                      

To reduce Eq. (1) to the following ODE : 

( , , ,...) 0,P u u u                                                                                         (3)  

Where P  is a polynomial in ( )u   and its total derivatives, while ,k   are 

constants and the prime notation in (3) denotes differentiation with respect to .  

  



 27 

On Solving Some Fifth Order Nonlinear PDEs Using the Modified Kudryashov Method 

 
Step 2. We suppose that Eq. (3) has the formal solution  

 

 
0

( ) ( ),
N

n

n

n

u a Q 


                                                                                    (4)  

where   0,1,...,na n N  are constants to be determined, such that 

0,   ( )Na and Q   is the solution of the equation  

 2( ) ( ) ( ) ln( )Q Q Q a                                                                          (5) 

Eq. (5) has the solutions  

 
1

( )
1

Q
a

 


                                                                                           (6)  

 

Where  0,  1a a   is a number. If ,a e  then we have the modified Kudryashov 

method which has been applied by many authors, see for example [5]. 

Step 3. We determine the positive integer N  in Eq. (4) by considering the 

homogeneous balance between the highest order derivatives and the nonlinear 

terms in Eq. (3). 

Step 4. Substitute Eq. (4) along with Eq. (5) into Eq. (3), we calculate all the 

necessary derivatives , ,...u u   of the function ( ).u    As a result of this 

substitution, we get a polynomial of ( ),  ( 0,1,2,...).iQ i  In this polynomial we 

gather all terms of same powers of ( )iQ   and equating them to zero, we obtain a 

system of algebraic equations which can be solved by the Maple or Mathematica 

to get the unknown parameters     0,1,..., ,   and .na n N k  Consequently, we 

obtain the exact solutions of Eq. (1). 

Remark 1. The obtained solutions can depended on the symmetrical hyperbolic 

Lucas functions and Fibonacci functions proposed by Stakhov and Rozin [15]. 

The symmetrical Lucas sine, cosine, tangent and cotangent functions are 

respectively, defined as  
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( )
( ) ,    ( ) ,    ( ) ,

( )

a a sLs
sLs a a cLs a a tLs

a a cLs

 
   

 


  




 




     


  

( )
( )

( )

a a cLs
ctLs

a a sLs

 

 











 


                                               (7) 

                                                                             

Also, these functions satisfy the following formulas: 

   
2 2

( ) ( ) 4cLs sLs                                                                             (8)  

   
2 2 4

( ) ( )
5

cFs sFs                                                                            (9)  

The obtained solutions in this paper can be obtained in terms of the symmetrical 

hyperbolic Lucas functions. 

Applications 

 

In this section, we apply the modified Kudryashov method to find the exact 

solutions of the following nonlinear PDEs: 

Example 1. The Kaup-Kupershmidt (KK) Equation  

This equation is well known [16] and has the form  

2

3 520 25 10 0.t x x xx x xu u u u u uu u                                                       (10) 

Let us now solve equation (10) using the modified Kudryashov method. To this 

end, we use the wave transformation (2) to reduce equation (10) to the following 

ODE: 

2 3 3 (3) 5 (5)20 25 10 0.u ku u k u u k uu k u                                             (11)  

Balancing (5)u  with 2u u  yields  2.N    Consequently, equation (11) has the 

formal solution  

2

0 1 2u a a Q a Q                                                                                     (12)  
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where 
0 1,a a  and 

2a  are constants to be determined such that 
2 0.a    From 

equation (12),  we get  

 

  
1 2(ln )( 2 ) ( 1),u a a Qa Q Q                                                                    (13)  

 2

1 2(ln ) ( 1) ( 1 2 ) 2 (3 2) ,u a Q Q Q a Q Q a                                       (14) 

(3) 3 2 2

1 2(ln ) ( 1) (1 6 6 ) 2 (4 15 12 ) ,u a Q Q Q Q a Q Q a                     (15) 

  

(4) 4 2 3

1

2 3

2

(ln ) ( 1)[( 1 14 36 24 )

2 ( 8 57 108 60 ) ] ,

u a Q Q Q Q Q a

Q Q Q Q a

      

   
                              (16) 

  

(5) 5 2 3 4

1

2 3 4

2

(ln ) ( 1)[(1 30 150 240 120 )

2 (16 195 660 840 360 ) ]

u a Q Q Q Q Q Q a

Q Q Q Q Q a

     

    
       

(17) 

 

Substituting (12)-(17) into (11) and equating all the coefficients of powers of 

( )Q   to zero, we obtain algebraic system of equations ,on solving the obtained 

algebraic equations using the Maple or Mathematica, we get the following results: 

 

Case 1. 

  2 2 2 2 2 2 5 4

0 1 2(ln ) ,  12 (ln ) ,  12 (ln ) ,  11 (ln ) .a k a a k a a k a k a       (18) 

From (6), (7), (12), (18) , we obtain the following exact solutions of Eq. (10) 

2

2 2

1

ln( )
( , ) (ln ) 12 ,

2

k a
u x t k a

cLs


 
 
   

  
  
  

                                                    (19)  

 

2

2 2

2

ln( )
( , ) (ln ) 12 ,

2

k a
u x t k a

sLs


 
 
   

  
  
  

                                                   (20)  
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Case 2. 

    (21)   
2 2 2 2 2 2 5 4

0 1 2

1 3 3 1
(ln ) ,  (ln ) ,  (ln ) ,  (ln ) .

8 2 2 16
a k a a k a a k a k a

 
    

       

2

2 2

3

1 3 ln( )
( , ) (ln ) ,

8 2

2

k a
u x t k a

cLs


 
 
  

  
  
  

                                                        

(22) 

         

2

22

4

1 3 ln( )
( , ) ln ,

8 2

2

k a
u x t k a

sLs


 
 
  

  
  
  

                                                      (23)  

Example 2. The Ito Equation 

This equation is well known [16] and has the form  

(24)                                    2

3 52 6 3 0.t x x xx x xu u u u u uu u       

Let us solve equation (24) by using the modified Kudryashov method. To this 

end, we use the wave transformation (2) to reduce equation (24) to the following 

ODE: 

                                
2 3 3 (3) 5 (5)2 6 3 0.u ku u k u u k uu k u                              (25)  

Balancing (5)u  with 2u u  yields  2.N    Consequently , equation (24) has the 

formal solution (12). Substituting (12)-(17) into (24) and equating all the 

coefficients of powers of ( )Q   to zero, we  obtain algebraic system of equations 

,on solving the obtained algebraic equations using the Maple or Mathematica, we 

get the following result: 

 
2 2 2 2 2 2 5 4

0 1 2

5
(ln ) ,  30 (ln ) ,  30 (ln ) ,  6 (ln )

2
a k a a k a a k a k a


                (26) 
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From (6) , (7) , (12) , (26) , , we obtain the following exact solutions of Eq. (25) 

 

                               

2

2 2

1

5 ln
( , ) (ln ) 30 ,

2

2

k a
u x t k a

cLs


 
 
  

  
  
  

                              (27)  

 (28) 

 

2

2 2

2

5 ln
( , ) (ln ) 30 ,

2

2

k a
u x t k a

sLs


 
 
  

  
  
  

  

 

Example 3. The Caudrey-Dodd-Gibbon Equation (CDG) 

This equation is well known [16] and has the form : 

  
                              

2

3 5180 30 30 0.t x x xx x xu u u u u uu u                                 (29)  

Let us solve equation (29) by the modified Kudryashov method. To this end , we 

use the wave transformation (2) to reduce equation (29) to the following ODE: 

 (30) 2 3 3 (3) 5 (5)180 30 30 0.u ku u k u u k uu k u          

Balancing (5)u  with 2u u  yields 2.N    Consequently, equation (29) has the 

formal solution (12) . Substituting (12)-(17) into (29) and equating all the 

coefficients of powers of ( )Q    to zero, we  obtain algebraic system of equations 

,on solving the obtained algebraic equations using the Maple or Mathematica, we 

get the following results: 

Case 1. 

 
           

2 2 5 4 2 3 2

1 2 1 0 0(ln ) ,  ,  (ln ) 180 30 (ln ) .a k a a a k a ka k a a                (31)  

In this case, we deduce the following exact solutions of Eq. (29) 
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2

1 0

ln
( , ) ,

2

k a
u x t a

cLs


 
 
  

  
  
  

                                             (32)  

 

                                  

2

2 0

ln
( , ) ,

2

k a
u x t a

sLs


 
 
  

  
  
  

                                              (33)  

Case 2.  

 
       

2 2 2 2 2 2 5 4

0 1 2

1
(ln ) ,  2 (ln ) ,  2 (ln ) ,  (ln ) .

6
a k a a k a a k a k a


              (34) 

In this case, we deduce the following exact solutions of Eq. (29)   

(35)                         

2

2 2

3

1 ln
( , ) (ln ) 2 ,

6

2

k a
u x t k a

cLs


 
 
  

  
  
  

 

 

2

2 2

4

1 ln
( , ) (ln ) 2 ,

6

2

k a
u x t k a

sLs


 
 
  

  
  
  

                        (36)  

Example 4. The Lax Equation 

This equation is well known [16] and has the form : 

  
                                     

2

3 530 20 10 0.t x x xx x xu u u u u uu u                            (37)  

Let us solve equation (37) by the modified Kudryashov method. To this end , we 

use the wave transformation (2) to reduce equation (37) to the following ODE: 
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        (38)         2 3 3 (3) 5 (5)30 20 10 0.u ku u k u u k uu k u           

Balancing (5)u  with 2u u  yields 2.N    Consequently, equation (37) has the 

formal solution (12) . Substituting (12)-(17) into (37) and equating all the 

coefficients of powers of ( )Q    to zero, we  obtain algebraic system of equations 

,on solving the obtained algebraic equations using the Maple or Mathematica, we 

get the following results: 

Case 1. 

 
               

2 2 5 4 2 3 2

1 2 1 0 02 (ln ) ,  ,  (ln ) 30 10 (ln ) .a k a a a k a ka k a a            (39) 

In this case, we deduce the following exact solutions of Eq. (37)   

                                          

2

1 0

ln
( , ) 2 ,

2

k a
u x t a

cLs


 
 
  

  
  
  

                                     (40) 

 (41)    

2

2 0

ln
( , ) 2 ,

2

k a
u x t a

sLs


 
 
  

  
  
  

  

Case 2. 

 
       

2 2 2 2 2 2 5 4

0 1 2

1 7
(ln ) ,  6 (ln ) ,  6 (ln ) ,  (ln ) .

2 2
a k a a k a a k a k a

 
          (42)  

In this case, we deduce the following exact solutions of Eq. (37)   

 (43)                  

2

2 2

3

1 ln
( , ) (ln ) 6 ,

2

2

k a
u x t k a

cLs


 
 
  

  
  
  

  

  



 34 

Khaled A. E. Alurrfi and Mohammed E. H. Attaweel 

 
2

2 2

4

1 ln
( , ) (ln ) 6 ,

2

2

k a
u x t k a

sLs


 
 
  

  
  
  

                  (44) 

  

Example 5. The Sawada-Kotera (SK) Equation 

This equation is well known [16] and has the form : 

 (45) 2

3 55 5 5 0.t x x xx x xu u u u u uu u       

Let us solve equation (45) by the modified Kudryashov method. To this end , we 

use the wave transformation (2) to reduce equation (45) to the following ODE: 

        (46)           
2 3 3 (3) 5 (5)5 5 5 0.u ku u k u u k uu k u           

Balancing (5)u  with 2u u  yields 2.N    Consequently, equation (46) has the 

formal solution (12) . Substituting (12)-(17) into (46) and equating all the 

coefficients of powers of ( )Q    to zero, we  obtain algebraic system of equations 

,on solving the obtained algebraic equations using the Maple or Mathematica, we 

get the following results: 

Case 1. 

 2 2 5 4 2 3 2

1 2 1 0 06 (ln ) ,  ,  (ln ) 5 5 (ln ) .a k a a a k a ka k a a               (47) 

In this case, we deduce the following exact solutions of Eq. (45)   

  

                              (48)  

2

1 0

ln
( , ) 6 ,

2

k a
u x t a

cLs


 
 
  

  
  
  
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2

2 0

ln
( , ) 6 ,

2

k a
u x t a

sLs


 
 
  

  
  
  

                                 (49) 

Case 2.  

(50) 2 2 2 2 5 4

0 1 2 1(ln ) ,  12 (ln ) ,  ,  (ln ) .a k a a k a a a k a        

In this case, we deduce the following exact solutions of Eq. (45)  

  

 

 

2

2 2

3

ln
( , ) (ln ) 12 ,

2

k a
u x t k a

cLs


 
 
   

  
  
  

                       (51) 

 

                     (52) 

2

2 2

4

ln
( , ) (ln ) 12 .

2

k a
u x t k a

sLs


 
 
   

  
  
  

  

 

Physical Explanations of the Obtained Solutions 

 

In this section we have presented some graphs of these solutions by taking 

suitable values of involved unknown parameters to visualize the underlying 

mechanism of the original equations. The solution obtained in this paper are bell-

shaped soliton solutions and singular bell-shaped soliton solution. Using 

mathematical software Maple or Mathematica, the plots of some obtained 

solutions of equations (19) and (28) have been shown in Figs.1-2. 
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Fig.1. The plot of solution (19) when 1, 1, 2k a   .  

 

Fig.2. The plot of solution (28) when 2, 1, 3k a   . 
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Conclusion 

In summary , we have presented the modified Kudryashov method and used it 

to construct more general exact solutions of nonlinear PDE's with the aid of 

Maple 14. This method provides a powerful mathematical tool for obtaining more 

general exact solutions of many nonlinear PDE's in mathematical physics. 

Applying this method to the indicated equations , we have successfully obtained 

many new exact travelling wave solutions. To our knowledge, these solutions 

have not been reported in the former literature. Furthermore ,this method is valid 

for a large number of nonlinear equations with variable coefficients. Finally, all 

solutions obtained in this article have been checked with the Maple 14 by putting 

them back into the original equation. 
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