The Libyan Journal of Science (An International Journal): Volume 20, 2017

On the Metrizabiliy of Extremal Spaces

Mabruk Ali Sola Department of Mathematics, Faculty of Science, Tripoli University mabruk_sola@yahoo.com

Abstract

A topological space (X, τ) is called an extremal space if there is no topology on X strictly finer than τ which is not discrete. It was proved that (X, τ) is an extremal space if and only if

 $\tau = \mathbf{P}(\mathbf{X} \setminus \{x\}) \cup \{\{x\} \cup F : F \in \mathfrak{F}\},\$

for some $x \in X$ and some ultrafilter \mathcal{F} in X\{x} [3, 4]. Where P(X\{x}) is the power set of X\{x}. In this paper I will prove that any extremal space is not metrizable.

Keywords: Extremal space; 1st Countable space; Metrizable space.

المستخلص

يسمى الفضاء (X, τ) فضاء متطرف إذا لم توجد توبولوجيا على X أقوى من τ . لقد أثبت أن (X, τ) فضاء متطرف إذا و إذا كان فقط $\tau = P(X \setminus \{x\}) \cup \{x\} \cup F : F \in \Im$, لبعض $X \in X$ ولبعض المرشحات الفوقية على {X} X [3] X. [4, 3] مجموعة القوة للمجموعة [4] X. في هذه الورقة سوف أثبت أن أى فضاء متطرف يكون غير قابل للمتربة.

Preliminaries

Throughout the paper I am assuming X is an infinite set. A space (X, τ) is metrizable if there exists a metric d defined on X such that the topology τ_d induced by d is equivalent to τ [1, 5]. A space X is 1st countable if any point in X has a

Accepted for publication: 13/8/2017

Mabruk Ali Sola

countable local open base and if X is T_1 , then X is 1st countable if and only if for any $x \in X$ there exists a countable collection $\{U_n\}_{n=1}^{\infty}$ of open sets containing x such that $U_{n+1} \subsetneq U_n$ for all n and $\bigcap_{n=1}^{\infty} U_n = \{x\}$ [1, 5]. A filter \mathfrak{F} in a set X is a collection \mathfrak{F} of non-empty subsets of X such that if $F_1, F_2 \in \mathfrak{F}$ then $F_1 \cap F_2 \in \mathfrak{F}$ and if $F \in \mathfrak{F}$ and $G \subseteq X$ with $F \subseteq G$, then $G \in \mathfrak{F}$. A filter \mathfrak{F} is called an ultrafilter if there is no filter strictly finer than \mathfrak{F} if and only if for any $E \subseteq X$ either $E \in \mathfrak{F}$ or $X \setminus E \in \mathfrak{F}$. A collection C of non-empty subsets of X is a filter base for a filter in X if for any $C_1, C_2 \in C$ there exist $C_3 \in C$ such that $C_3 \subseteq C_1 \cap C_2$. A filter \mathfrak{F} is said to be free filter if $\bigcap_{F \in \mathfrak{F}} F = \phi$, otherwise \mathfrak{F} is called a fixed filter [4, 5].

Lemma 1:

If X is a set and $\{C_n\}_{n=1}^{\infty}$ is a collection of non-empty subsets of X such that $C_{n+1} \subseteq C_n$ for all n, and $\bigcap_{n=1}^{\infty} C_n = \phi$, then $\{C_n\}_{n=1}^{\infty}$ is a filter base for a free filter on X which is not an ultrafilter.

Proof:

Let $\mathfrak{F} = \{ F \subseteq X : C_n \subseteq F \text{ for some } n \in IN \}$, then clearly \mathfrak{F} is a free filter with filter base the collection $\{C_n\}_{n=1}^{\infty}$. To show \mathfrak{F} is not an ultrafilter, for each n choose $x_n \in C_n \setminus C_{n+1}$ and let $E = \{x_1, x_2, \ldots\}$, then $E \subseteq X$ with $E \notin \mathfrak{F}$ and $X \setminus E \notin \mathfrak{F}$. So \mathfrak{F} is not an ultrafilter.

A collection \mathfrak{B} of subsets of a topological space X is said to be locally finite collection if every point in X has an open neighborhood which intersects only finitely many members of \mathfrak{B} . A collection \mathfrak{B} of subsets of a topological space X is said to be σ -locally finite if $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$, where \mathfrak{B}_n is locally finite collection for all n.

The following Theorem was independently proved by Nagata and Sinirnov gives a necessarily and sufficient condition for a space to be metrizable [5].

Theorem 2:

A topological space is metrizable if and only if it is T_3 and has σ -locally finite base.

The following Theorem is Corollary 5 of [4].

Theorem 3:

If $\tau = P(X \setminus \{x\}) \cup \{\{x\} \cup F : F \in \mathfrak{F}\}$, for some $x \in X$ and some free filter in $X \setminus \{x\}$, then (X, τ) is T_4 , where $P(X \setminus \{x\})$ is the power set of $X \setminus \{x\}$.

On the Metrizabiliy of Extremal Spaces

The Main Results

The following Theorem says that some extremal spaces does not has the first countability property.

Theorem 4:

If (X, τ) is an extremal T_1 space, then (X, τ) is not 1st countable.

Proof:

Suppose (X, τ) is an extremal space, then by [4] there exists $x \in X$ such that $\tau = P(X \setminus \{x\}) \cup \{\{x\} \cup F: F \in \mathfrak{F}\}$ for some ultrafilter in $X \setminus \{x\}$.

If (X, τ) is T_1 , then \mathfrak{F} must be free ultrafilter and hence by Theorem3, (X, τ) is a T_4 space. If (X, τ) is 1^{st} countable space, then there exists a countable collection $\{F_n\}_{n=1}^{\infty}$ of subsets of $X \setminus \{x\}$, such that $F_n \in \mathfrak{F}$, $F_{n+1} \subsetneq F_n$ for all n and $\{\{x\} \cup F_n\}_{n=1}^{\infty}$ is countable local base at x with $\bigcap_{n=1}^{\infty} F_n = \phi$.

So \mathcal{F} has a countable filter base $\{F_n\}_{n=1}^{\infty}$ with empty intersection and so by Lemmal, \mathcal{F} is not an ultrafilter which is a contradiction.

Now, since every metrizable space is 1^{st} countable and T_1 so we have the following corollary.

Corollary 5:

If (X, τ) is an extremal space, then (X, τ) is not metrizable.

Now, if $x_0 \in X$, \mathfrak{F} is a free filter in $X \setminus \{x_0\}$, and $\tau = P(X \setminus \{x_0\}) \cup \{\{x_0\} \cup F: F \in \mathfrak{F}\}$, the following theorem gives a necessarily and sufficient condition for the space (X, τ) to be metrizable.

Theorem 6:

If $x_0 \in X$, $\tau = P(X \setminus \{x_0\}) \cup \{\{x_0\} \cup F: F \in \mathcal{F}\}\)$, where \mathcal{F} is a free filter in $X \setminus \{x_0\}$, then (X, τ) is metrizable iff \mathcal{F} has a countable filter base.

Proof:

⇒ Suppose (X, τ) is metrizable, then (X, τ) is 1st countable space and since (X, τ) is T_1 there exists a countable collection $\{U_n\}_{n=1}^{\infty}$ of open sets containing x_0 such that $U_{n+1} \subsetneq U_n$ for all n and $\bigcap_{n=1}^{\infty} U_n = \{x_0\}$. For each n, let $C_n = U_n \setminus \{x_0\}$, then $\{C_n\}_{n=1}^{\infty}$ is countable collection of subsets of X\ $\{x_0\}$, with $C_{n+1} \subsetneq C_n$ for all n, and $\bigcap_{n=1}^{\infty} C_n = \phi$. Since any open set containing x_0 has the form $\{x_0\} \cup F$ for

Mabruk Ali Sola

some $F \in \mathfrak{F}$ and so there exist k such that $x_0 \in U_k = \{x_0\} \cup C_k \subset \{x_0\} \cup F$, it follows that the collection $\{C_n\}_{n=1}^{\infty}$ is a countable filter base for \mathfrak{F}.

 $\leftarrow \text{Let } \mathfrak{F} \text{ be a free filter in } X \setminus \{x_0\}, \text{ with a countable filter base } \{C_n\}_{n=1}^{\infty}, \text{ then } \bigcap_{n=1}^{\infty} C_n = \phi \text{ and we can assume } C_{n+1} \subsetneq C_n \text{ for all } n. \text{ Let }$

$$\mathfrak{B}_{1} = \{\{x\}, x \neq x_{0}, x \notin C_{1}\} \cup \{\{x_{0}\} \cup C_{1}\}$$

$$\mathfrak{B}_{2} = \{\{x\}, x \neq x_{0}, x \notin C_{2}\} \cup \{\{x_{0}\} \cup C_{2}\}$$

$$\vdots$$

$$\mathfrak{B}_{n} = \{\{x\}, x \neq x_{0}, x \notin C_{n}\} \cup \{\{x_{0}\} \cup C_{n}\}$$

$$\vdots$$

$$\vdots$$

We claim that \mathfrak{B}_n is a locally finite collection of open sets for all *n*. Clearly \mathfrak{B}_n is a collection of open sets, and for any $y \in X$. If $y \notin C_n$, $y \neq x_0$, then $\{y\}$ is an open neighbourhood of *y* intersects only one member of \mathfrak{B}_n . If $y \in C_n$ or $y = x_0$, then $\{x_0\} \cup C_n$ is an open neighbourhood of *y* intersects only one member of \mathfrak{B}_n .

Therefore \mathfrak{B}_n is a locally finite collection for all n. Let $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ then \mathfrak{B} is a σ -locally finite collection. To show \mathfrak{B} is a base for the topology $\tau = P(X \setminus \{x_0\}) \cup \{\{x_0\} \cup F: F \in \mathfrak{F}\}$, clearly $\{x\} \in \mathfrak{B}$ for all $x \in X \setminus \{x_0\}$.

If $z \in \{x_0\} \cup F$ for some $F \in \mathcal{F}$, then if $z \neq x_0$ we have $z \in \{z\} \subset \{x_0\} \cup F$ and if $z = x_0$, then there exist $C_n \in \mathcal{F}$ with $\{x_0\} \cup C_n \subset \{x_0\} \cup F$. So \mathfrak{B} is a base for the topology τ and since \mathfrak{B} is σ -locally finite collection and (X, τ) is T_4 so by Theorem2, (X, τ) is a metrizable space.

Example:

Let $X = IR^n$, O is the origin of IR^n . Let $C_n = \{x \in IR^n : 0 < ||x|| < \frac{1}{n}\}$ for all $n \in IN$. Then $\{C_n\}_{n=1}^{\infty}$ is a collection of non-empty subsets of $IR^n \setminus \{O\}$, with $C_{n+1} \subsetneq C_n$ for all n, and $\bigcap_{n=1}^{\infty} C_n = \phi$. Let

$$\mathfrak{B}_{1} = \{\{x\}, x \neq O, x \notin C_{1}\} \cup \{\{O\} \cup C_{1}\} \\ \mathfrak{B}_{2} = \{\{x\}, x \neq O, x \notin C_{2}\} \cup \{\{O\} \cup C_{2}\} \\ \vdots \qquad \vdots \\ \mathfrak{B}_{n} = \{\{x\}, x \neq O, x \notin C_{n}\} \cup \{\{O\} \cup C_{n}\} \\ \vdots \qquad \vdots \\ \end{cases}$$

And let $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$, then \mathfrak{B} is a σ -locally finite base for the topology $\tau = P(IR^n \setminus \{O\}) \cup \{\{O\} \cup F: F \in \mathfrak{F}\}$, where \mathfrak{F} is the free filter in $IR^n \setminus \{O\}$ with filter

On the Metrizabiliy of Extremal Spaces

base the collection $\{C_n\}_{n=1}^{\infty}$. Hence by the last Theorem (IR, τ) is a metrizable space.

References

- [1] Kelley, J. L. (1995). General Topology, Spring-Varlag.
- [2] Mera, K. M and Sola, M. A. (2005). Extremal Topology. Damascus University Journal for Basic Science, **21** (1).
- [3] Sola, M. A. A note on extremal Topologies. Unpublished paper.
- [4] Sola, M. A and Tarjm, M. S. (2016). on extremal Topology. The Libyan Journal of Science, **19B**, 39-42.
- [5] Willard, S. (1970). General Topology, Addision-welsey Publishing Company, INC.