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Abstract 

 

In this work the Grimm and Storer  method is employed to calculate all the higher 

excited states wave functions and their corresponding energy eigenvalues , for the 

first time by modifying the iterative numerical procedure. Using symmetry 

arguments of an even Hamiltonian, the even and odd excited states can be 

calculated separately. 
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 المستخلص

لحساب الدوال الموجية لحالات الاثارة العالية والقيم  في هذه الورقة تم توظيف طريقة جريم وستورير
الذاتية المصاحبة لها لأول مرة وذلك بتعديل الاجراء التكراري العددي. وباستخدام التماثل للهاملتون 

 الزوجي يمكن حساب كل من الحالات الزوجية والحالات الفردية منفصلتين.  
 

Introduction 

 

     The Grimm and Storer method is a numerical method that is usually used to 

solve the Schrödinger equation in the imaginary time domain to obtain the ground 

state of bound quantum system. The Schrödinger differential equation is 

transformed into an integral equation that can be solved iteratively. Because of the 

diffusion nature in the imaginary time only lowest physical state (ground state) is 

obtained by this procedure [1].  
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Using symmetry arguments for even parity potential in one dimension leads to the 

extraction of the first excited state instead of the ground state [2]. Numerical 

removal of any lower states by  Gram-Schmidt orthogonalization procedure can 

also lead to the next excited state as well [3]. In this work a new simple numerical 

iteration procedure is used to obtain any desired quantum state (if it exists) 

directly without using other numerical expensive techniques. The harmonic 

potential in one dimension is used to illustrate this technique. 

 

  General Theory 

 

      The time dependent Schrödinger equation  �̂� Ѱ =  𝑖ħ 
𝜕Ѱ

𝜕𝑡
  can be rewritten as a 

diffusion type equation by performing a transformation from real time domain to 

imaginary time τ domain as follows 

�̂� Ѱ = - 
𝜕Ѱ

𝜕𝛽
 ,                                                                                                     (1) 

where �̂� is the Hamiltonian of the system, and the parameter  𝛽 = 𝜏
ħ⁄ . 

The solution of equation (1) can be written as 

Ѱ(𝑥, 𝛽) =  ∫ 𝐺(𝑥, 𝑥0, 𝛽)Ѱ0(𝑥0)𝑑𝑥0,                                                      (2)

∞

−∞

 

where Ѱ0(𝑥) =  Ѱ(𝑥, 𝛽 = 0), and 𝛽 is a real parameter related to the temperature 

T by 𝛽 = 1
𝑘𝑇⁄  where 𝑘 is Boltzman constant, so the iterative process can be 

viewed physically as cooling the system to the ground state.  

The Green's function in an integral form is given by 

𝐺(𝑥, 𝑥0, 𝛽) = < 𝑥|𝑒−𝛽�̂�|𝑥0 > .                                                                  (3) 

Equation (2) can be transformed into more convenient  iterative form 

Ѱ(𝑥, 𝑛𝛽) =  ∫ 𝐺(𝑥, 𝑥0, 𝛽)Ѱ (𝑥0, (𝑛 − 1)𝛽)𝑑𝑥0,                                 (4)

∞

−∞

 

where n is an integer representing the number of iterations and  𝛽 can assume any 

value. 

For even potential we can classify the eigenfunctions to even and odd functions, 

and by replacing the integral form in equation (4) from −∞ to ∞  by 0 to ∞ we 

get   

Ѱ(𝑥, 𝑛𝛽) = ∫ [𝐺(𝑥, 𝑥0, 𝛽) ± 𝐺(𝑥, 𝑥0, 𝛽)]

∞

0

Ѱ(𝑥0, (𝑛 − 1)𝛽)𝑑𝑥0,          (5)   

where the + sign used for even functions and the – sign used for odd functions. 
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The solution for any β can be found if the Green's function can be solved exactly 

but this is difficult and an approximation for the Green's function for small 𝛽 is 

used instead by expanding Hamiltonian in equation (1) as �̂� = �̂� 0 + 𝐻′̂(𝑥) to get 

[1,4] 

𝐺(𝑥, 𝑥0, 𝛽) ≈ 𝑒−𝛽
2

 𝐻′̂(𝑥) 𝐺0(𝑥, 𝑥0, 𝛽) 𝑒−𝛽
2

 𝐻′̂(𝑥0) + 𝑂(𝛽3) 
where  𝐺0(𝑥, 𝑥0, 𝛽) is the Green's function solution of the equation  

𝐺0(𝑥, 𝑥0, 𝛽) = < 𝑥|𝑒−𝛽𝐻0̂|𝑥0 > 

and in one dimension [2[ 

𝐺0(𝑥, 𝑥0, 𝛽)  =
1

√4𝜋𝛽
𝑒

−
(𝑥−𝑥0)2

4𝛽  . 

To show the argument of the reduction to the ground state one expands Ѱ0(𝑥) in a 

complete set of eigenfunctions of the Hamiltonian �̂� ie 

Ѱ0(𝑥) =  ∑ 𝑎𝑖𝑢𝑖(𝑥),                                                                                (6)

∞

𝑖=0

 

where 𝑢𝑖 are the stationary eigenstates of the Hamiltonian ie  �̂�𝑢𝑖 =  𝐸𝑖𝑢𝑖. 

By pluging equation (6) into equation (2) and using equation (3) we get [2] 

Ѱ(𝑥, 𝛽) =  ∑ 𝑎𝑖𝑒−𝛽𝐸𝑖  

∞

𝑖=0

𝑢𝑖(𝑥).                                                                  (7) 

The solution for large 𝛽 leads to the smallest eigenstate with the smallest 

eigenvalue 𝐸0 or equivalently small β with large n as is shown in Fig.1.   
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Figure 1. The amplitude coefficient of other states relative to that of the ground 
state plotted VS E-E0 at  = 0.05 and different number of iterations

n = 8
n = 16
n = 32
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𝑙𝑖𝑚
𝑛→∞

∑ 𝑎𝑖𝑒
−𝑛𝛽𝐸𝑖𝑢𝑖 

∞

𝑖=0

 ≈  𝑎0𝑒−𝑛𝛽𝐸0𝑢0 .                                                      (8)    

 

So the normalized amplitude of any other state can be written as 

 

𝑏 = 𝑒−𝑛𝛽(𝐸−𝐸0).                                                                                          (9) 
 

This coefficient damps faster than that of the ground state, with half width 𝛿𝐸 of  

(spread) depending on the number of the iteration n and 𝛽 by 𝛿𝐸 =
1

𝑛𝛽
. 

In Fig.1 the blue line for n=8 with 𝛿𝐸 = 2.5, the green line for n=16 with 𝛿𝐸 =
1.25, and the red line for n=32 with  𝛿𝐸 =0.625. 

The new iterative procedure employed in this paper to get the higher excited states 

involves the following, after n-cooling iterations one extra iteration step using 

numerical differentiation of the last cooling step with respect to 𝛽   

 

𝜒 = −
𝜕Ѱ

𝜕𝛽
= 𝑙𝑖𝑚

𝛽′→0

Ѱ(𝑥, 𝑛𝛽) − Ѱ(𝑥, 𝑛𝛽 + 𝛽′)

𝛽′
 

as a heating iterative step is used between the cooling steps and this amounts to an 

introduction of an extra dependence on 𝐸𝑖 for the eigenstate coefficients such that     

𝜒 = −
𝜕Ѱ

𝜕𝛽
=  ∑ 𝐸𝑖𝑎𝑖𝑒

−𝛽𝐸𝑖  

∞

𝑖=0

𝑢𝑖(𝑥) ,                                                     (10) 

and it acts like heating the system. 

 Repeating the process every n-cooling steps for M times the amplitude coefficient 

for each eigenstate becomes 

𝑏′ = 𝐸𝑀𝑒−𝑀𝑛𝛽𝐸  ,                                                                                       (11) 
which has the maximum value at 

�̅� =
1

𝑛𝛽
 .                                                                                                      (12) 

 The normalized amplitude has a spread of 𝛿𝐸 which depends on the number of 

heating steps by 𝛿𝐸 =
�̅�

√𝑀
  as shown in Fig.2, so the more heating steps used the 

closer and larger growth of the amplitude of the state with energy �̅� to the value of 
1

𝑛𝛽
 as shown in Fig.3. 

In Fig.3  the blue line for n=2 with �̅� = 2.5, the green line for n=4 with �̅� = 1.25, 

and the red line for n=8 with  �̅� =0.625. 
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In Fig.2 the blue line for M=8 with 𝛿𝐸 =0.88, the green line for M=32 with 

𝛿𝐸 =0.44, and the red line for M=128 with  𝛿𝐸 =0.22. 

Fig.3 shows how changing the number of cooling steps n results in different 

normalized amplitude coefficients centered on different energies and we can 

expect that the convergence to the lower state needs fewer heating steps while the 

convergence to the higher states needs more heating steps M because 𝛿𝐸 is larger 

for large�̅�.  
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Figure 2. The normalized amplitude coefficient plotted VS E at  = 0.1
 and number of iterations n = 4 with different number of M

M = 8
M = 32
M = 128
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Figure 3. The normalized amplitude coefficient plotted VS E at  = 0.2 
and M = 16 with different number of iterations

n = 2
n = 4
n = 8
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elimination of all lower states at each numerical iteration [3], the much simpler 

iterative technique used in this work decreases greatly  the numerical cost and it is 

much simpler to implement  .  

 

Applications 

 

  The simple harmonic oscillator is chosen to test this method and to illustrate the 

effect of cooling and heating steps on the results. If the unit distance is 𝑎 = √
ħ

𝑚𝜔
  

and the unit of energy is 1

2
ħ𝜔2 the effective potential for simple harmonic oscillator 

in these units is 𝐻′̂(𝑥) = 𝑉(𝑥) = 𝑥2 . The small values of 𝛽 can cause a vanishing 

effect of potential term in Hamiltonian in a small range of 𝑥, so for the ground 

state we used a quite large 𝛽 and then to get the  excited states we chose a suitable 

values of 𝛽 and n using equation (12).  

 
 The development of 4𝑡ℎ excited  wave functions is shown in Fig.4a at different 

number of heating steps M. The figure illustrates the progression of the wave 

function toward the exact one. The initial starting guess of the wave function is 

simply a normalized square box ( not shown in Fig.4a) and after n=5 of cooling 

steps, each cooling step is followed by a normalizing step. The resulting shape of 

the wave function resembles the ground state wave function in this case M=0 (the 

blue curve) where there is growth toward the origin. The next iterative start is the 

numerical derivative of the blue curve with respect to 𝛽 resulting in M=1 (the 

green curve), notice the development of first node near the origin, then after few 

cooling and heating steps a second node develops as shown in Fig.4a at M=5, then  
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M=10, and finally M=15, the amplitudes between the nodes grow in an increasing 

fashion till finally the shape conformed with the exact wave function (the black 

curve) that has the closest energy to the value of 
1

𝑛𝛽
 . 

 

In Fig. 4b  both the numerical calculated wave function after M=50 step and the 

exact one are shown as well as their differences. The calculated energy of this 

particular excited state is 9.0001 compared with exact value of 9.0000 [5].    
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Figure 5a. The development of the normalized 5
th

 excited state wave
 function of harmonic oscillator for different values of M
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Figure 4b. The normalized 4
th

 excited state wave function of harmonic oscillator 

for  = 0.02 , n = 5 and M = 50
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The numerical calculated state wave function after M=60 step and the exact one 

are shown as well as their difference in Fig.5b.The calculated energy of this 

particular excited state is 11.0001 which is in a good agreement with exact value 

of 11.000 [5]. The energy eigenvalues are calculated by evaluating the expectation 

value of the Hamiltonian for the normalized wave function 𝐸 =

∫ Ѱ∗(𝑥)
∞

−∞
�̂�Ѱ(𝑥)𝑑𝑥  , where the integrals evaluated using  Simpson rule. In table 

1 and table 2 we show the energy expectation value of the normalized wave 

function for the two cases presented here after every 10 heating steps. 

   

Table 1. Calculated Value 0f the 4th State Energy of Harmonic Oscillator with β = 0.02  
and n =5  

 

eigenvalue No of heating 

loop M 

8.6999 

9.0418 

9.0119 

9.0012 

9.0001 

45 

45 

30 

65 

55 

 
 

Table 2. Calculated Value of the 5th State Energy of Harmonic Oscillator with β = 0.01  
and n =9  
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Figure 5b. The normalized 5
th

 excited state wave function of harmonic oscillator

for  = 0.01, n = 9 and M = 60
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No of heating 

loop M 

eigenvalue 

10 

20 

30 

40 

50 

60 

10.4608 

10.8452 

10.9627 

10.9917 

10.9985 

11.0001 

 

Conclusions 

 

    In this paper we have presented a detailed account of the diffusion method 

applied to excited states where we have demonstrated in Fig.1 how the iterative 

procedure leads to the ground state, then by using a simple numerical procedure 

based on adding a heating iteration step after n-cooling steps and by choosing a 

proper  values of parameter 𝛽 and number of cooling steps n as shown in Fig.3 

this developed diffusion method is used for calculating simultaneously the high 

excited state energy and it's wave function. We have demonstrated the 

convergence of the iterative wave function  to the exact wave function by using 

more heating steps M. This technique offers the advantage over the Gram- 

Schmidt orthogonalization technique of being less expensive in numerical cost .  
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