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Abstract 

 
It has been proved that if 𝑋 is an infinite set, 𝑥0 ∈ 𝑋 and τ = P(X\{𝑥0}) ∪ {{𝑥0} ∪ F ∶ F ∈
ℱ} then (𝑋, 𝜏) is a metrizable space, where ℱ is a free filter in X\{𝑥0} with countable filter 

base and P(X\{𝑥0}) is the power set of X\{𝑥0} [3]. In this paper I will define a metric on 𝑋 

which induces the topology τ and show that every metrizable space with exactly one non-

isolated point has to be of this form. 
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 المستخلص
𝐗مجموعة غير منتهية,  𝐗 تمثبت أنه إذا كان ∋ 𝐱∘  و𝛕 = 𝐏(𝐗\{𝐱𝟎}) ∪ {{𝐱𝟎} ∪ 𝐅 ∶ 𝐅 ∈ 𝓕}  حيث𝓕  مرشح حر في

𝐗\{𝐱𝟎}  له أساس عد ِّي و𝐏(𝐗\{𝐱𝟎})  مجموعة القوة للمجموعة𝐗\{𝐱𝟎}  فإن(𝐗, 𝛕)  في هذه [3]فضاء قابل للمترية .
أعلاه. و سوف اثبت أن أي فضاء قابل للمترية به فقط نقطة  𝛕الورقة سوف أعرف دالة مترية أو قياس يعطي التوبولوجيا 

 .واحدة غير معزولة يكون على هذا النحو

 

Preliminaries 

 

Throughout the paper I am assuming 𝑋 is an infinite set. A space (𝑋, 𝜏) is said to be 

metrizable if there is a metric 𝑑 defined on 𝑋 induces the topology 𝜏 [1,5]. If (𝑋, 𝜏) is a 

metrizable space with a metric 𝑑, then for any 𝜀 > 0, 𝑥 ∈ 𝑋, 𝐵𝜀(𝑥) = {𝑦 ∈ 𝑋: 𝑑(𝑥, 𝑦) < 𝜀} 
is called an open disc with center 𝑥 and radius 𝜀. A point 𝑥 of a topological space 𝑋 is 

called an isolated point if {𝑥} is open in 𝑋. 

A filter in a set 𝑋 is a collection ℱ of non-empty subsets of 𝑋 such that if 𝐹1, 𝐹2 ∈ ℱ, 

then 𝐹1 ∩ 𝐹2 ∈ ℱ and if F ∈ ℱ, G ⊆ X with F ⊆ G, then G ∈ ℱ. A subcollection ℓ of a filter 

ℱ is a filter base for ℱ if for any F ∈ ℱ there exists 𝐶 ∈ ℓ with C ⊂ F.  
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A filter ℱ is said to be free filter if FF∈ℱ
 ⋂  = ∅. A collection ßn of subsets of a topological 

space 𝑋 is said to be locally finite collection if every point in 𝑋 has an open neighborhood 

which intersects only finitely many members of ßn. A collection ß 𝑛 of subsets of a 

topological space 𝑋 is said to be 𝜎-locally finite if ß=
1n





ß 𝑛, where ß 𝑛 is locally finite 

collection for all 𝑛 [5]. 

The following theorem is theorem 23.9 of [5]. 

 

Theorem-1 

A topological space 𝑋 is metrizable if and only if it is 𝑇3 and has a 𝜎-locally finite base. 

The following theorem is theorem 6 of [3]. 

If 𝑥∘ ∈ 𝑋, 𝜏 = 𝑃(𝑋\{𝑥∘}) ∪ {{𝑥∘} ∪ 𝐹: 𝐹 ∈ ℱ}, where ℱ is a free filter in 𝑋\{𝑥∘}, 𝑃(𝑋\
{𝑥∘}) is the power set of 𝑋\{𝑥∘}, then (𝑋, 𝜏) is metrizable if and only if ℱ has a countable 

filter base. 

Clearly if 𝑥∘, 𝑋, 𝜏 as in the above theorem, then 𝑥∘ is the only non-isolated point in 𝑋. 

 

The main results 

 

The main result of this section is finding a metric which induces the topology given in 

theorem 1.2 above and it is given in the following theoremز 

 

Theorem-I 

There is a metric induces the topology 𝜏 = 𝑃(𝑋\{𝑥∘}) ∪ {{𝑥∘} ∪ 𝐹: 𝐹 ∈ ℱ}, where 𝑥∘ ∈
𝑋 and ℱ is a free filter in 𝑋\{𝑥∘} with countable filter base. 

 

Proof 

Let {𝐶𝑛}𝑛=1
∞  be a countable filter base for ℱ and suppose 𝐶𝑛 ⊋ 𝐶𝑛+1 for all 𝑛. 

Since ℱ is free, then 
1n





𝐶𝑛 = ∅. Let 𝑑: 𝑋 × 𝑋 → [0,∞) defined by  

𝑑(𝑥, 𝑦) =

{
 
 
 
 

 
 
 
 
1,                                                    𝑖𝑓 𝑥, 𝑦 ∈ 𝑋\{𝑥∘}, 𝑥 ≠ 𝑦 𝑎𝑛𝑑 (𝑥 ∉ 𝐶1 𝑜𝑟 𝑦 ∉ 𝐶1)

1,                                                                𝑖𝑓 (𝑥 = 𝑥0, 𝑦 ∉ 𝐶1) 𝑜𝑟 (𝑦 = 𝑥0, 𝑦 ∉ 𝐶1)
1

𝑛 + 1
, 𝑖𝑓 (𝑥 = 𝑥0, 𝑦 ∈ 𝐶1 𝑎𝑛𝑑 𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑒𝑎𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 ∉ 𝐶𝑛)

                   𝑜𝑟 (𝑦 = 𝑥0, 𝑥 ∈ 𝐶1 𝑎𝑛𝑑 𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑒𝑎𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ∉ 𝐶𝑛)

max {
1

𝑛 + 1
,

1

𝑚 + 1
} ,                                  𝑖𝑓 𝑥 ≠ 𝑦, 𝑥, 𝑦 ∈ 𝐶1 𝑎𝑛𝑑 𝑛,𝑚 𝑎𝑟𝑒 

                               𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑡ℎ𝑒 𝑙𝑒𝑎𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ∉ 𝐶𝑛 , 𝑦 ∉ 𝐶𝑚

 

0,                                                                                                       𝑖𝑓 𝑥 = 𝑦, 𝑥, 𝑦 ∈ 𝑋

 

To check that 𝑑 is a metric: 

clearly,  

(i) 𝑑(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑋, 

(ii) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦, and 
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(iii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 hold 

(iv) to check the triangle inequality, let 𝑥, 𝑦, 𝑧 ∈ 𝑋, then we have the following cases: 

a) If 𝑥, 𝑦, 𝑧 ∈ 𝑋\(𝐶1⋃{𝑥∘}), then clearly the inequalities 

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 
𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) 
𝑑(𝑦, 𝑧) ≤ 𝑑(𝑦, 𝑥) + 𝑑(𝑥, 𝑧) hold. 

b) If 𝑥 = 𝑥∘, 𝑦, 𝑧 ∉ 𝐶1 then the inequalities 

𝑑(𝑥∘, 𝑧) ≤ 𝑑(𝑥∘, 𝑦) + 𝑑(𝑦, 𝑧) 
𝑑(𝑥∘, 𝑦) ≤ 𝑑(𝑥∘, 𝑧) + 𝑑(𝑧, 𝑦) 
𝑑(𝑦, 𝑧) ≤ 𝑑(𝑦, 𝑥∘) + 𝑑(𝑥∘, 𝑧) hold. 

c) If ∈ 𝑋\(𝐶1⋃{𝑥∘} ,𝑦 ,𝑧 ∈ 𝐶1, then also the three inequalities hold. 

d) If 𝑥, 𝑦, 𝑧 ∈ 𝐶1. Suppose 𝑥 ∉ 𝐶𝑛, 𝑦 ∉ 𝐶𝑚, 𝑧 ∉ 𝐶𝑘 where 𝑛, 𝑚, 𝑘 are the least 

integers with these proporties. Suppose 𝑛 ≤ 𝑚 ≤ 𝑘, then all of the inequalities 

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 
𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) 
𝑑(𝑦, 𝑧) ≤ 𝑑(𝑦, 𝑥) + 𝑑(𝑥, 𝑧) hold 

e) If 𝑥 = 𝑥∘, 𝑦, 𝑧 ∈ 𝐶1  

suppose (𝑥∘, 𝑦) =
1

𝑛+1
 , 𝑑(𝑥∘, 𝑧) =

1

𝑚+1
 and 𝑛 ≤ 𝑚, then the three triangle 

inequalities 

𝑑(𝑥∘, 𝑧) ≤ 𝑑(𝑥∘, 𝑦) + 𝑑(𝑦, 𝑧) 
𝑑(𝑥∘, 𝑦) ≤ 𝑑(𝑥∘, 𝑧) + 𝑑(𝑧, 𝑦) 
𝑑(𝑦, 𝑧) ≤ 𝑑(𝑦, 𝑥∘) + 𝑑(𝑥∘, 𝑧) hold. 

f) If 𝑥 = 𝑥∘, 𝑦 ∈ 𝐶1, 𝑧 ∉ 𝐶1 then also the three triangle inequalities hold. 

 

Hence 𝑑 is a metric on 𝑋. 
Next we will show that 𝑑 induces the topology 𝜏 = 𝑃(𝑋\{𝑥∘}) ∪ {{𝑥∘} ∪ 𝐹: 𝐹 ∈ ℱ}. 
If 𝑥 ∉ 𝐶1, 𝑥 ≠ 𝑥∘ then 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) = 1 for any 𝑦 ∈ 𝑋, 𝑦 ≠ 𝑥. So 𝐵1(𝑥) = {𝑥}. If 𝑥 ∈

𝐶1, 𝑥 ∉ 𝐶2, then 𝑑(𝑥, 𝑥∘) =
1

3
= 𝑑(𝑥∘, 𝑥 ), 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) = 1 if 𝑦 ∉ 𝐶1 and 𝑑(𝑥, 𝑦) =

1

3
= 𝑑(𝑦, 𝑥) if 𝑦 ∈ 𝐶1. So 𝐵1

3

(𝑥) = {𝑥}. 

If 𝑥 ∈ 𝐶2, 𝑥 ∉ 𝐶3, then 𝑑(𝑥, 𝑥∘) =
1

4
= 𝑑(𝑥∘, 𝑥 ), 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) =

1

4
 if 𝑦 ∉ 𝐶1. and 

𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) =
1

4
  if 𝑦 ∈ 𝐶1. So 𝐵1

4

(𝑥) = {𝑥}.  

In general if 𝑥 ∈ 𝐶𝑛, 𝑥 ∉ 𝐶𝑛+1 then 𝐵 1

𝑛+2

(𝑥) = {𝑥}. 

If 𝑥 = 𝑥∘, then 𝑑(𝑦, 𝑥∘) = 𝑑(𝑥∘, 𝑦) = 1 if 𝑦 ∉ 𝐶1, 𝑑(𝑥∘, 𝑦) = 𝑑(𝑦, 𝑥∘) =
1

𝑛+1
 if 𝑦 ∈ 𝐶1 and 

𝑛 is the least integer such that 𝑥 ∉ 𝐶𝑛. 

So 𝐵1

𝑛

(𝑥∘) = {𝑦 ∈ 𝑋: 𝑑(𝑥∘, 𝑦) <
1

𝑛
} = 𝐶𝑛⋃{𝑥∘}; that is 𝐵1(𝑥∘) = 𝐶1⋃{𝑥∘}, 𝐵1

2

(𝑥∘) =

𝐶2⋃{𝑥∘} and so on. 

Therefore as a base for the metric topology we have the collection 
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ℬ = {𝐵1(𝑥): 𝑥 ∈ 𝑋\𝐶1, 𝑥 ≠ 𝑥∘}⋃{
1n





{𝐵 1

𝑛+2

: 𝑥 ∈ 𝐶𝑛\𝐶𝑛+1}}⋃{𝐵1

𝑛

(𝑥∘)}𝑛=1
∞  

     = {{𝑥}: 𝑥 ∈ 𝑋\{𝑥∘}}⋃{{𝑥∘}⋃𝐶𝑛}𝑛=1
∞  

and this base induces the topology 𝜏 = 𝑃(𝑋\{𝑥∘}) ∪ {{𝑥∘} ∪ 𝐹: 𝐹 ∈ ℱ}, where ℱ is a free 

filter in 𝑋\{𝑥∘} with {𝐶𝑛}𝑛=1
∞  as a filter base. 

 

The next theorem shows that if 𝑋 is a metrizable space with only one isolated point, then 

the metric topology will be as in the above theorem. 

 

Theorem-II 

A space (𝑋, 𝜏) is metrizable with only one non-isolated point 𝑥∘ if and only if  

𝜏 = 𝑃(𝑋\{𝑥∘}) ∪ {{𝑥∘} ∪ 𝐹: 𝐹 ∈ ℱ}, where ℱ is a free filter in 𝑋\{𝑥∘} with countable filter 

base. 

 

proof ⟹: 
Let 𝑋 be a metrizable space with 𝑥∘ as the only non-isolated point. 

Let 𝐶𝑛 = 𝐵1

𝑛

(𝑥∘)\{𝑥∘} for all 𝑛. 

then 𝐶𝑛 ≠ ∅, 𝐶𝑛 ⊆ 𝑋\{𝑥∘}, 𝐶𝑛+1 ⊊ 𝐶𝑛for all 𝑛 and 
1n





𝐶𝑛 = ∅. 

Let ℱ be the free filter with filter base {𝐶𝑛}𝑛=1
∞ . 

By theorem 1.2 if 𝜏∗ = 𝑃(𝑋\{𝑥∘}) ∪ {{𝑥∘} ∪ 𝐹: 𝐹 ∈ ℱ}, then (𝑋, 𝜏∗) is a metrizable space. 

To show 𝜏∗ = 𝜏, let 𝑈 = {𝑥∘} ∪ 𝐹 be an open neighborhood of 𝑥∘ in (𝑋, 𝜏∗), then there 

exists 𝑚 such that {𝑥∘} ∪ 𝐶𝑚 ⊂ {𝑥∘} ∪ 𝐹, so {𝑥∘} ∪ 𝐶𝑚 = 𝐵 1

𝑚

(𝑥∘) ⊆ {𝑥∘} ∪ 𝐹. Therefore 

{𝑥∘} ∪ 𝐹 ∈ 𝜏 and so 𝜏∗ ⊆ 𝜏. Also for any 𝑛, 𝐵1

𝑛

(𝑥∘) = {𝑥∘} ∪ 𝐶𝑛 ∈ 𝜏
∗ consequently 𝜏 ⊆ 𝜏∗ 

and hence 𝜏∗ = 𝜏. 
⟸: If 𝜏 = 𝑃(𝑋\{𝑥∘}) ∪ {{𝑥∘} ∪ 𝐹: 𝐹 ∈ ℱ}, where ℱ is a free filter in 𝑋\{𝑥∘} with 

countable filter base, then by the last theorem (𝑋, 𝜏) is metrizable with 𝑥∘ as the only non-

isolated point. Type equation here. 
 

2.3 Remark  

The next research is to find a metric for any metrizable space with finitely many non-

isolated points. 
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