The Libyan Journal of Science (An International Journal): Volume 21B, 2018

Impact Evaluation of the Omitted Observations Size on the Performance
of the Goldfeld-Quandt Test

Hasan Mohamed Rhoma

Department of Statistics, Faculty of Science, Tripoli University, Tripoli — Libya
E-mail: h.rhoma@uot.edu.ly

Abstract

Goldfeld-Quandt test is one of the three most popular tests to detect problem of
heteroscedasticity in regression analysis. This test was proposed by Goldfeld and Quandt in
1965. It is implemented as follow: (1) record the data set according to the values of the
independent variable, which is suspected to be cause of heteroscedasticity, from lowest to
highest, (2) divide the sample size, N, that was already sorted to three parts and omit the

middle part with size C. Thus, we obtain two subsamples of sizes n, and n,, usually
n,=n, =(n—c)/2 . If heteroscedasticity is present, then the variance of the last subsample

will not be the same as the variance of the first subsample; it tends to be larger. The F-test for
the ratio of the two variances can be used to test for the equality of variances. The ability of
the Goldfeld-Quandt test to detect the heteroscedasticity problem is likely to be sensitive to
the size of middle part, c, that should be discarded. In this work a simulation study was
conducted to determine the appropriate value of C to make the Goldfeld-Quandt test more
effective. The results of the simulation study confirmed that the appropriate size of the
omitted values, C, should not be less than 30% of the sample size, N, in order to ensure a best
performance of the Goldfeld-Quandt test.
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Introduction

One requirement of statistical inference in ordinary least squares (OLS) is that the error
variances, o, is the same across all the observations. This requirement is known as the
homoscedasticity assumption. Under this assumption and the other set of usual
assumptions, the estimators determined by OLS are best linear unbiased estimators
(BLUE). Thus, the statistical inference in OLS is valid. The heteroscedasticity occurs when
the error variances are not the same across observations, which means that
heteroscedasticity violates the homoscedasticity assumption. It is well known that when
the equality of error variance assumption is violated, the OLS may results an inefficient
estimate and hence the usual tests of significance are invalid. Therefore, the
heteroscedasticity problem should not be ignored and it is necessary to detect its presence.
There are many tests for detecting the presence of heteroscedasticity. The Goldfeld-Quandt
test is utilized if the variance of error term o/ is certainly related to one of the independent

variables.
Goldfeld and Quandt (1965) suggested the following steps for null and alternative
hypotheses of the form:

H, : o} is constant for all observations (Homoscedasticity)
H, : o7 is not the same for all observations (Heteroscedasticity)

Step 1. Order or rank the observations according to the values of X,, beginning with

the lowest X value.

Step 2. Divide the sample that has already been reordered into three groups, then, omit
the middle group of c observations. Two groups remain, each one has n, =n, =(n-c)/2
observations.

Step 3. Fit separate OLS regressions to the first n, observations and the last n,
observations, and obtain the respective residual sums of squares RSS; and RSS»; RSS;
representing the RSS from the regression corresponding to the smaller X, values (the

small variance group) and RSS; represents the larger X, values (the large variance group).
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The RSS; and RSS> have the same degrees of freedom when the two subsamples have
the same number of observations. Hence,

n,=n,=(n-c)/2, and df =df, = (n;c) v =(¥}

Where k is the number of parameters to be estimated including the constant term.
Step 4. Compute the GQ statistic

%@ = (Rss, /df,) 1)

Under the null hypothesis Ho, (homoscedasticity assumption) with the errors ¢, normally
distributed (usual assumption), the F;, statistic has F distribution with numerator and
denominator degrees of freedom (n—c—2k)/2 (Gujarati, 2003).

Reject the null hypothesis H, at significance level « and conclude that
heteroscedasticity is present if the p-value of the test are less than or equal to « .

Literature Review

Goldfeld and Quantd (1965) proposed using the test for heteroscedasticity after the
omission of some number of middle observations. The purpose of omitting some of middle
observations is to make the difference between the two error variances clearer. If few
observations are omitted the test may fail to detect the heteroscedasticity problem. But,
omitting too many observations diminishes the size of subsamples. Therefore, lower
degrees of freedom in the estimation with each subsample, and this tends to lower the
power of the test. The deletion of ¢ values with careful selection of the size of omitted
observations will increase the power of the test. Goldfeld and Quantd did not specify how
many observations should be removed. They gave the relative frequency of cases in which
the false hypothesis is rejected for samples of dimension n=30 and n =60 after omitting
0, 4, 8, 12 or 16 central observations which estimated the power of the test. They obtained
the largest frequency for n=30 and n =60 after the omission, respectively, of 8 and 16
central observations (equal to 26.1%). Buse (1984), analysed the problem for
n = 20,40,80 removing 20% of central observations. The same dimension of the removed

set of observations was used by Dufour et al. (2004) for n=50 and n=100. Maddala
(1992) suggests the removal of central observations to increase the power of the test, but
he does not answer the question of how many observations to remove.

Judge et al. (1982) suggest that c=4 if n=30 and ¢ =10if n is about 60, which have
been found satisfactory in practice (Gujarati, 2003). Monte Carlo’s experiment was based
on discard of around 25% of the observations (Griffiths and Surekha, 1985; Creel, 2014).
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Williams (2015), indicted that, typically, ¢ might equal 20% of the sample size. This
technically is not necessary, but experience shows that this tends to improve the power of
the test. Abbott (2009) showed that ¢ is arbitrarily chosen to equal some value between
n/6 and n/3. Gau (2002), stated that the number of observations to be omitted is arbitrary

and usually between one-sixth and one-third. Note that n; and n2 must be greater than the
number of coefficients to be estimated.

Shalabh and Kanpur (2007) stated that one difficulty in Goldfeld-Quantd test is that the
choice of c is not obvious. The basic objective of ordering of observations and deletion of
observations on the middle part may not reveal the heteroscedasticity effect. Since the first

and last values of o/ give the maximum discretion, so deletion of smaller value may not
give the proper idea of heteroscedasticity. The working choice of c is suggested as ¢ = n/3

Griffiths and Surekha (1985) used sample sizes of n=20 and 50 and they set ¢ =4 and
10, respectively. Djolov (2002) omitted the middle 5 observations of ¢ =50 sample size.
Harvey and Phillip (1974) suggest that no more than a third of the observations should be
dropped.

Heteroscedastic VVariance Structures
In this study one type of heteroscedasticity structure is considered with two different
degrees. The heteroscedasticity structure specification is:

V(g) =07 =kX/. (2)

This model has been discussed by Geary (1966), Park (1966), Lancaster (1968), Kmenta
(1971), and Harvey (1976).

Simulation Data Model
The Goldfeld-Quandt test assumes that the heteroscedasticity variance depends on one

of the independent variables in the model. We consider the model with a single
independent variable:

Yi=5+ X +¢&, 3)

for S, =4 and g =5, were held constant across all simulation conditions. The error

terms &; were generated from a normal distribution with mean zero and variances given by
(2). We employed this model of variance structure with two different degrees for the

heteroscedasticity as:

V(g)=0'=0c’X,, 4)
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V(g)=0i =0°X7, (5)

for o = 0.65and all of the other classical assumptions still hold.

The independent variable X is non-stochastic variable with n elements randomly
selected from the numbers 1 to 20. The values of the dependent variable Y are obtained
from Eq. (3).

Simulation Study

The data for this study were generated and the Goldfeld-Quandt test was conducted
using MATLAB software. In order to get different values of the power of the test and then
to pick the size ¢ that has greatest power test a simulation study was run using various
sizes of sample (n = 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170,
180, 190, 200, 210, 220 and 250). Then for each sample size, 150,000 data sets were
generated, we numbered the omitted values and ¢ as ratios of sample size (c= 0%, 1%, 2%,
.., 60%) were varied. The power of test was estimated by calculating the proportion of
rejections in 150,000 replications at a 5% level of significance.

Tables 1 and 2 show the simulation results, which indicate the power of Goldfeld-
Quandt test at different samples size and different omitted values as percentage of sample
size.

Conclusions

The form of error variance was varied by two different construction forms, and for the
proportion of the omitted values we have attempted to conduct a large-enough number of
simulations for our data that show heteroscedasticity, to detect accurately how this factor
(omitted values size) impacts the performance of the Goldfeld-Quandt test; i.e. to detect
the heteroscedasticity problem. It was found that increasing the proportion of the omitted
values results in an improvement in the performance of the Goldfeld-Quandt test.

We can say in general that the best performance of the test occurs when the size of
omitted values are from ¢=30% to c=50% of the whole sample size. These results are
not consistent almost with all of the value of C presented in many studies, which,
surprisingly, propose that the number of omitted values should not exceed 30% of
observations. From this study we can confirm that the appropriate size of the omitted
values should not be less than 30% of observations in order to ensure the best performance
of the test across all different samples size as well as the severity of heteroscedasticity.
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Table 1. Simulated power of Goldfeld-Quandt test for error variance = s2x using « = 0.05.

C

Sample

Size 0% 20% 25% 30% 35% 40%  45%  50% 55%

20 0.3941 0.4276 0.4296 0.4256 0.4148 0.4065 0.3714

30 0.5478 0.6051 0.6165 0.6246 0.6208 0.6140 0.6034 0.5927

40 0.6685 0.7437 0.7519 0.7626 0.7618 0.7560 0.7541 0.7464

50 0.7595 0.8311 0.8464 0.8511 0.8535 0.8543 0.8462 0.8485

60 0.8237 0.8876 0.8998 0.9005 0.9056 0.9087 0.9105 0.9076

70 0.8750 0.9271 0.9341 0.9432 0.9453 0.9452 0.9432 0.9420 0.9053
80 0.9099 0.9525 0.9573 0.9611 0.9641 0.9652 0.9679 0.9676 0.9668
90 0.9361 0.9670 0.9715 0.9750 0.9775 0.9779 0.9817 0.9809 0.9778
100 | 0.9552 0.9797 0.9836 0.9854 0.9871 0.9874 0.9889 0.9884 0.9883
110 | 0.9688 0.9877 0.9898 0.9916 0.9927 0.9937 0.9934 0.9926 0.9925
120 | 0.9787 0.9924 0.9938 0.9946 0.9954 0.9956 0.9960 0.9957 0.9951
130 ]0.9849 0.9954 0.9961 0.9970 0.9972 0.9977 0.9981 0.9978 0.9978
140 ] 0.9897 0.9970 0.9977 0.9979 0.9985 0.9985 0.9987 0.9988 0.9984
150 10.9929 0.9983 0.9989 0.9990 0.9991 0.9993 0.9993 0.9995 0.9993
160 10.9950 0.9988 0.9991 0.9993 0.9995 0.9996 0.9997 0.9997 0.9995
170 10.9966 0.9992 0.9994 0.9996 0.9997 0.9997 0.9998 0.9998 0.9997
180 10.9977 0.9996 0.9998 0.9998 0.9999 0.9998 0.9998 0.9998 0.9998
190 10.9982 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
200 10.9989 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
210 ]10.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
220 ]10.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
250 ]1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 2. Simulated power of Goldfeld-Quandt test for error variance=os2X2 using
a =0.05.

C
0% 20%  25% 30% 35% 40% 45% 50% 55%

Sample
Size

20 0.7512 0.8025 0.8196 0.8123 0.8197 0.8061 0.7929 0.7709

30 0.8953 0.9355 0.9450 0.9509 0.9532 0.9482 0.9456 0.9390 0.9373
40 0.9569 0.9789 0.9825 0.9845 0.9862 0.9867 0.9861 0.9861 0.9852
50 0.9829 0.9937 0.9950 0.9965 0.9969 0.9969 0.9972 0.9976 0.9970
60 0.9936 0.9981 0.9988 0.9988 0.9992 0.9991 0.9994 0.9992 0.9990
70 0.9976 0.9996 0.9997 0.9997 0.9998 0.9998 0.9999 0.9998 0.9998
80 0.9989 0.9999 0.9999 0.9999 1000 1.000 1.000 1.000 0.9999
90 0.9997 0.9999 1.000 1.000 1000 1.000 1.000 1.000 1.000
100 10.9998 1.000 1.000 1.000 1000 1.000 1.000 1.000 1.000
110 1.000 1.000 1.000 1.000 1000 1.000 1.000 1.000 1.000
120 1.000 1.000 1.000 1.000 1000 1.000 1.000 1.000 1.000

250 1.000 1.000 1000 1000 1000 1000 1.000 1.000 1.000
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