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Abstract 
 

Goldfeld-Quandt test is one of the three most popular tests to detect problem of 

heteroscedasticity in regression analysis. This test was proposed by Goldfeld and Quandt in 

1965. It is implemented as follow: (1) record the data set according to the values of the 

independent variable, which is suspected to be cause of heteroscedasticity, from lowest to 

highest, (2) divide the sample size, n , that was already sorted to three parts and omit the 

middle part with size c . Thus, we obtain two subsamples of sizes 1n  and 
2n , usually 

2)(21 cnnn   . If heteroscedasticity is present, then the variance of the last subsample 

will not be the same as the variance of the first subsample; it tends to be larger. The F-test for 

the ratio of the two variances can be used to test for the equality of variances. The ability of 

the Goldfeld-Quandt test to detect the heteroscedasticity problem is likely to be sensitive to 

the size of middle part, c, that should be discarded. In this work a simulation study was 

conducted to determine the appropriate value of c  to make the Goldfeld-Quandt test more 

effective. The results of the simulation study confirmed that the appropriate size of the 

omitted values, c , should not be less than 30% of the sample size, n , in order to ensure a best 

performance of the Goldfeld-Quandt test. 

 

Keywords: Heteroscedasticity; Homoscedasticity; Power of the test; Mont Carlo 
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مستخلصال  
من أكثر الاختبارات المعروفة للكشف عن مشكلة عدم تجانس التباين في تحليل الانحدار والذي  كواندت-غولدفيلدبر اختبار تيع

 مجموعة البيانات ( إعادة ترتيب 1هذا الاختبار يتم تنفيذه كالتالي:  . 5951في سنة  Quandtو  Goldfeldاقترحه كل من 
( تقسيم العينة 0 الذي يشتبه في أنه سبب في عدم تجانس التباين، قيمة وفقا لقيم المتغير المستقل  من أصغر قيمة إلى أكبر 

  نتحصل على عدد ، وبالتاليcذو الحجم   وحذف الجزء الأوسط  تصاعدياً إلى ثلاثة أجزاء  التي تم إعادة ترتيبها  n الحجم ذات
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21)(2تكون ما على التوالي، وعادة  2nو  1nمن العينات الفرعية بالأحجام  اثنين cnnn   ،3 إذا كان عدم تجانس )

للنسبة بين  Fالتباين موجود، فإن تباين العينة الفرعية الثانية لن يكون مساوي لتباين العينة الفرعية الأولى. يمكن استخدام اختبار 
للكشف عن مشكلة عدم  كواندت-غولدفيلدمن المرجح أن تكون قدرة اختبار  لاختبار تساوي تباين العينتين الأولى والثانية.تباينين 

. في هذه الورقة تم إجراء دراسة محاكاة لتحديد الحجم المناسب للقيم التي يجب cتجانس التباين حساسة لحجم الجزء الأوسط، 
أكثر فاعلية. أكدت نتائج دراسة المحاكاة أن الحجم  كواندت-غولدفيلد، وذلك لجعل اختبار cإهمالها من منتصف البيانات، 
، لأجل ضمان أفضل أداء لاختبار nمن حجم العينة الكلي،  %32 ، يجب أن لا تكون أقل منcالمناسب للقيم التي يتم اهمالها، 

 .كواندت-غولدفيلد
 

Introduction 

 

One requirement of statistical inference in ordinary least squares (OLS) is that the error 

variances, 
2 , is the same across all the observations. This requirement is known as the 

homoscedasticity assumption. Under this assumption and the other set of usual 

assumptions, the estimators determined by OLS are best linear unbiased estimators 

(BLUE). Thus, the statistical inference in OLS is valid. The heteroscedasticity occurs when 

the error variances are not the same across observations, which means that  

heteroscedasticity violates the homoscedasticity assumption. It is well known that when 

the equality of error variance assumption is violated, the OLS may results an inefficient 

estimate and hence the usual tests of significance are invalid. Therefore, the 

heteroscedasticity problem should not be ignored and it is necessary to detect its presence. 

There are many tests for detecting the presence of heteroscedasticity. The Goldfeld-Quandt 

test is utilized if the variance of error term 
2

i  is certainly related to one of the independent 

variables.  

Goldfeld and Quandt (1965) suggested the following steps for null and alternative 

hypotheses of the form:  
2: ioH   is constant for all observations (Homoscedasticity)  

2

1 : iH  is not the same for all observations (Heteroscedasticity) 

Step 1. Order or rank the observations according to the values of iX , beginning with 

the lowest X  value. 

Step 2. Divide the sample that has already been reordered into three groups, then, omit 

the middle group of c observations. Two groups remain, each one has 2)(21 cnnn   

observations.  

Step 3. Fit separate OLS regressions to the first 1n  observations and the last 2n  

observations, and obtain the respective residual sums of squares RSS1 and RSS2; RSS1 

representing the RSS from the regression corresponding to the smaller iX  values (the 

small variance group) and RSS2 represents the larger iX  values (the large variance group).  
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The RSS1 and RSS2 have the same degrees of freedom when the two subsamples have 

the same number of observations. Hence,  

 

2)(21 cnnn   ,  and  






 





2

2

2

)(
21

kcn
k

cn
dfdf        

 

Where k is the number of parameters to be estimated including the constant term. 

Step 4. Compute  the GQ statistic 

 

                                                 
 
 11

22

dfRSS

dfRSS
FGQ                                                        (1) 

 

Under the null hypothesis Ho (homoscedasticity assumption) with the errors i  normally 

distributed (usual assumption), the GQF  statistic has F distribution with numerator and 

denominator degrees of freedom 2)2( kcn   (Gujarati, 2003).  

Reject the null hypothesis oH  at significance level   and conclude that 

heteroscedasticity is present if the p-value of the test are less than or equal to  . 

 

Literature Review 

Goldfeld and Quantd (1965) proposed using the test for heteroscedasticity after the 

omission of some number of middle observations. The purpose of omitting some of middle 

observations is to make the difference between the two error variances clearer. If few 

observations are omitted the test may fail to detect the heteroscedasticity problem. But, 

omitting too many observations diminishes the size of subsamples. Therefore, lower 

degrees of freedom in the estimation with each subsample, and this tends to lower the 

power of the test. The deletion of c  values with careful selection of the size of omitted 

observations will increase the power of the test. Goldfeld and Quantd did not specify how 

many observations should be removed. They gave the relative frequency of cases in which 

the false hypothesis is rejected for samples of dimension 30n  and 60n  after omitting 

0, 4, 8, 12 or 16 central observations which estimated the power of the test. They obtained 

the largest frequency for 30n  and 60n  after the omission, respectively, of 8 and 16 

central observations (equal to 26.1%). Buse (1984), analysed the problem for 

80,40,20n removing 20% of central observations. The same dimension of the removed 

set of observations was used by Dufour et al. (2004) for 50n  and 100n . Maddala 

(1992) suggests the removal of central observations to increase the power of the test, but 

he does not answer the question of how many observations to remove. 

Judge et al. (1982) suggest that 4c  if 30n  and 10c if n  is about 60, which have 

been found satisfactory in practice (Gujarati, 2003). Monte Carlo’s experiment was based 

on discard of around 25% of the observations (Griffiths and Surekha, 1985; Creel, 2014).  
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Williams (2015), indicted that, typically, c might equal 20% of the sample size. This 

technically is not necessary, but experience shows that this tends to improve the power of 

the test. Abbott (2009) showed that c  is arbitrarily chosen to equal some value between 

6n  and 3n . Gau (2002), stated that the number of observations to be omitted is arbitrary 

and usually between one-sixth and one-third. Note that n1 and n2 must be greater than the 

number of coefficients to be estimated. 
Shalabh and Kanpur (2007) stated that one difficulty in Goldfeld-Quantd test is that the 

choice of c is not obvious. The basic objective of ordering of observations and deletion of 

observations on the middle part may not reveal the heteroscedasticity effect. Since the first 

and last values of 
2

i  give the maximum discretion, so deletion of smaller value may not 

give the proper idea of heteroscedasticity. The working choice of c is suggested as 3nc 

. 

Griffiths and Surekha (1985) used sample sizes of 20n  and 50 and they set 4c  and 

10, respectively. Djolov (2002) omitted the middle 5 observations of 50c  sample size. 

Harvey and Phillip (1974) suggest that no more than a third of the observations should be 

dropped.  

 

Heteroscedastic Variance Structures 

In this study one type of heteroscedasticity structure is considered with two different 

degrees. The heteroscedasticity structure specification is: 

 
 iii kXV  2)( .                                                       (2) 

This model has been discussed by Geary (1966), Park (1966), Lancaster (1968), Kmenta 

(1971), and Harvey (1976). 

 

Simulation Data Model 

 

The Goldfeld-Quandt test assumes that the heteroscedasticity variance depends on one 

of the independent variables in the model. We consider the model with a single 

independent variable:  

 

iii XY   10 ,                                                              (3) 

  

for 40    and 51  , were held constant across all simulation conditions. The error 

terms i  were generated from a normal distribution with mean zero and variances given by 

(2). We employed this model of variance structure with two different degrees for the 

heteroscedasticity as:  

 

iii XV 22)(   ,                                                                  (4) 
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222)( iii XV   ,                                                                  (5) 

  

for 65.0 and all of the other classical assumptions still hold.  

The independent variable X  is non-stochastic variable with n  elements randomly 

selected from the numbers 1 to 20. The values of the dependent variable Y  are obtained 

from Eq. (3). 

 
Simulation Study 

 

The data for this study were generated and the Goldfeld-Quandt test was conducted 

using MATLAB software. In order to get different values of the power of the test and then 

to pick the size c  that has greatest power test a simulation study was run using various 

sizes of sample (n = 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 

180, 190, 200, 210, 220 and 250). Then for each sample size, 150,000 data sets were 

generated, we numbered the omitted values and c  as ratios of sample size (c= 0%, 1%, 2%, 

. . , 60%) were varied. The power of test was estimated by calculating the proportion of 

rejections in 150,000 replications at a 5% level of significance. 

Tables 1 and 2 show the simulation results, which indicate the power of Goldfeld-

Quandt test at different samples size and different omitted values as percentage of sample 

size. 

 

Conclusions 

 

The form of error variance was varied by two different construction forms, and for the 

proportion of the omitted values we have attempted to conduct a large-enough number of 

simulations for our data that show heteroscedasticity, to detect accurately how this factor 

(omitted values size) impacts the performance of the Goldfeld-Quandt test; i.e. to detect 

the heteroscedasticity problem. It was found that increasing the proportion of the omitted 

values results in an improvement in the performance of the Goldfeld-Quandt test.  

We can say in general that the best performance of the test occurs when the size of 

omitted values are from %30c  to %50c  of the whole sample size. These results are 

not consistent almost with all of the value of c  presented in many studies, which, 

surprisingly, propose that the number of omitted values should not exceed 30% of 

observations. From this study we can confirm that the appropriate size of the omitted 

values should not be less than 30% of observations in order to ensure the best performance 

of the test across all different samples size as well as the severity of heteroscedasticity. 
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Table 1. Simulated power of Goldfeld-Quandt test for error variance X2  using 05.0 . 

  c  

Sample 

Size 
0% 20% 25% 30% 35% 40% 45% 50% 55% 

20 1.31.1 0.4276 0.4296 0.4256 0.4148 0.4065 0.3714   

30 0.5478 0.6051 0.6165 0.6246 0.6208 0.6140 0.6034   0.5927  

40 0.6685 0.7437 0.7519 0.7626 0.7618 0.7560 0.7541 0.7464  

50 0.7595 0.8311 0.8464 0.8511 0.8535 0.8543 0.8462 0.8485  

60 0.8237 0.8876 0.8998 0.9005 0.9056 0.9087 0.9105 0.9076  

70 0.8750 0.9271 0.9341 0.9432 0.9453 0.9452 0.9432 0.9420 0.9053 

80 0.9099 0.9525 0.9573 0.9611 0.9641 0.9652 0.9679 0.9676 0.9668 

90 0.9361 0.9670 0.9715 0.9750 0.9775 0.9779 0.9817 0.9809 0.9778 

100 0.9552 0.9797 0.9836 0.9854 0.9871 0.9874 0.9889 0.9884 0.9883 

110 0.9688 0.9877 0.9898 0.9916 0.9927 0.9937 0.9934 0.9926 0.9925 

120 0.9787 0.9924 0.9938 0.9946 0.9954 0.9956 0.9960 0.9957 0.9951 

130 0.9849 0.9954 0.9961 0.9970 0.9972 0.9977 0.9981 0.9978 0.9978 

140 0.9897 0.9970 0.9977 0.9979 0.9985 0.9985 0.9987 0.9988 0.9984 

150 0.9929 0.9983 0.9989 0.9990 0.9991 0.9993 0.9993 0.9995 0.9993 

160 0.9950 0.9988 0.9991 0.9993 0.9995 0.9996 0.9997 0.9997 0.9995 

170 0.9966 0.9992 0.9994 0.9996 0.9997 0.9997 0.9998 0.9998 0.9997 

180 0.9977 0.9996 0.9998 0.9998 0.9999 0.9998 0.9998 0.9998 0.9998 

190 0.9982 0.9997 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

200 1.1151 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

210 1.1112 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

220 1.1111 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Table 2. Simulated power of Goldfeld-Quandt test for error variance 22 X  using 

05.0 . 

  c  

Sample 

Size 
0% 20% 25% 30% 35% 40% 45% 50% 55% 

20 0.7512 0.8025 0.8196 0.8123 0.8197 0.8061 0.7929 0.7709  

30 0.8953 0.9355 0.9450 0.9509 0.9532 0.9482 0.9456 0.9390 0.9373 

40 0.9569 0.9789 0.9825 0.9845 0.9862 0.9867 0.9861 0.9861 0.9852 

50 0.9829 0.9937 0.9950 0.9965 0.9969 0.9969 0.9972 0.9976 0.9970 

60 0.9936 0.9981 0.9988 0.9988 0.9992 0.9991 0.9994 0.9992 0.9990 

70 0.9976 1.1111 1.1110 1.1110 1.1115 0.9998 0.9999 0.9998 0.9998 

80 0.9989 0.9999 0.9999 0.9999 1.000 1.000 1.000 1.000 0.9999 

90 0.9997 0.9999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

100 0.9998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

110 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

120 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

. 

. 
         

250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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