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Abstract 

 
In this paper, electromagnetic simulations in the two- and three-dimensions 

systems are performed by the finite difference time domain (FDTD) technique. 

The method can be applied for solving Maxwell’s curl equations numerically to 

calculate the Poynting vector distributions when placing the obstacles in the centre 

of a domain. Perfect electric conductor (PEC) structures of convenient shapes were 

constructed based on the geometric shape of the obstacle such as two parallel strips 

and triangle shapes in order to make a comparison between the simulations. The 

FDTD method will determine the values of the electric and magnetic field at any 

point in space and the grid is terminated with the first-order Gerrit Mur’s absorbing 

boundary condition (ABC) [1]. The boundary condition can be included in the 

calculations to absorb the waves when striking the boundaries. The ABC can affect 

the accuracy of the solutions as the calculations results demonstrate that good 

numerical performance of the FDTD obtained when utilizing the Mur’s ABC. In 

the provided examples, the achieved results indicate that very good radiation 

patterns were obtained when ABCs are implemented at all the edges. The results 

of FDTD simulations have shown that we have simulated the wave propagation in 

open domains. 
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Introduction 

 

Electromagnetic wave propagations will be numerically studied when including an 

obstacle in a computational domain and this is not easily described analytically. To 

overcome this difficulty, there are many different numerical techniques employed to 

calculate the fields such as the FDTD method. It is well known that this method employes 

solving Maxwell’s curl equations numerically by utilizing the central difference 

approximation. This method has been applied to solve many kinds of problems such as 

in medical application, and in predication of electromagnetic wave propagation, in 

studying plasma [2] and in communication system [3]. In this paper, we consider the 

propagations of electromagnetic waves in free space without and with including an 

obstacle in a domain as well as consider the behaviour of electromagnetic waves without 

and with an absorbing boundary condition. The FDTD simulation is studying the 

behaviour of EM wave in time in response to to a source exciting the domain. We have 

studied the distributions of Poynting vector when interacting of electromagnetic wave 

with an obstacle. We constructed the obstacles with different shapes located at the centre 

of a domain and the distance between the obstacle and the boundary filled with air. The 

obstacles will diffract and scatter the wave which can cause to vary the distributions of 

the fields. Therefore, the aim of this work is to describe how 2-D FDTD and 3-D FDTD 

approaches is utilized to study electromagnetic wave propagation in space containing a 

perfect electric conductor (PEC). Electromagnetic waves will impact with a perfect 

electric conductor obstacle as the distributions of the scattered fields will vary when 

including different shapes and size. The PEC structures of convenient shapes have been 

chosen by mapping each shapes into the domain to make a comparison in term of their 

distributions between the simulations. Once the electromagnetic field components are 

determined at every time step in each cell then Poynting vector can be calculated in each 

pixel and voxel at every time step in two and three dimensions, respectively. There are 

many shapes which could generate different distributions. Therefore, many examples can 

be studied such as a triangle geometric shape included in a domain. This is a very 

complicated structure to construct in a space. It can be done by generating the obstacles 

as a mesh mode in a domain. Moreover, the ABCs must be used in the FDTD simulation, 

because the computer’s storage and more memory are limited. Therefore, a computational 

domain must be utilized with limited size [4].  This problem can be solved by employing 

a method like absorbing boundary condition (ABC) to terminate a FDTD grid. It is well 

known that the space is required to be truncated to simulate an open space to prevent the 

reflections coming from the edges. To overcome this problem, it is therefore important to 

have the ABC in a computational domain to allow the waves to propagate into the infinite 

space without reflecting back. Because, the reflections will cause the waves to interfere 

with each other in the computational domain and this will produce reflection patterns. 

This will affect the numerical accuracy of the calculations. Therefore, part of this work 

was carried out to demonstrate how to implement the ABC and why an absorbing 

boundary condition should be included in a computational domain during the calculations 

which is very important to improve the accuracy of the calculations. It is also significant  
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to know that one of main advantage of the ABC is reducing computational time by 

decreasing the size of computational domain as the calculation will not include 

unnecessary large size storage arrays. This will lead to improve the FDTD performance 

and then obtain an accurate field distribution. Therefore, the boundaries will be 

implemented on all faces by applying the Mur’s approach [1]. This study will investigate 

the impact of including an obstacles in the space and the interactions of EM wave with 

obstacles which will be observed when the problem space is simulated as if it is 

surrounded by an open domain. Therefore, an example illustrating the effect of the 

implementation of the absorbing boundary conditions will be provided by computing the 

distributions of all components and the numerical calculations of interaction of the 

emitted EM wave with obstacles will be demonstrated in the results section. 

 

Method 

 

We can briefly describe the basic of the finite difference time domain (FDTD) method 

which was first proposed by Kane Yee [5] in 1966. The technique is a numerical method 

based on a finite difference concept that can be applied to find a solution of time 

dependent Maxwell’s curl equations: 
𝜕𝐄

𝜕𝑡
 =

1

ɛ𝑜
∇ × 𝐇         (1.a) 

𝜕𝐇

𝜕𝑡
= −

1

𝜇𝑜
∇ × 𝐄                        (1.b) 

Where the E is the electric field and H is magnetic field.  

The central finite difference approximation method applied to generate six discrete 

update equations to simulate a system in three dimensions case. Therefore, the field 

components can be written as the first in three dimensions case and second in two 

dimensions case since this study in this work is divided into two parts. The following 

equations can be utilized to update the electric field components in three-dimensional 

simulations [5, 6]: 
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And use of the following equations to update the magnetic fields components: 
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With regard to the two-dimensional simulations, we will utilize the transverse 

magnetic (TMz) mode and the discrete update equations can be given as [5]: 
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The FDTD updating equations provided in equations (2) and equations (3) will be 

applied to solve three- and two-dimensions cases, respectively. These equations can be 

implemented in the computer programs to calculate the electric and magnetic field 

components at each time step in a computational domain with including the obstacles at 

the centre of a domain. The calculated field components will be used to compute the 

Poynting vector that given by: 

 

𝐒 = 𝐄 × 𝐇             (4) 

 

The cross product of the E with H will provide the direction of propagation of the EM 

wave in space. Therefore, the Poynting vector (Watt/m2) can be computed in each pixel 

in 2-D case and each voxel in 3-D case.  

Furthermore, the first-order Mur’s absorbing boundary condition will be applied and 

the FDTD updating equation at the boundary as an example in 3-D case at x=0 gird 

boundary [1] given by: 

𝐸𝑧
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𝐸𝑧
𝑛(0, 𝑗, 𝑘 + 1/2))            (5) 

 

Similar equations will be implemented for other electric field components in mesh 

walls in 3-D and 2-D simulations which can be applied to absorb the reflections generated 

from the six boundaries in 3-D FDTD simulations and four boundaries in 2-D FDTD 

simulations. Therefore, the performance of Mur ABC will be demonstrated in the result 

section. 
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Results and Discussion 

 

The FDTD calculations were performed, the results of simulations were demonstrated 

and the output of the programs was wrote by a computer MATLAB (R2013a) 

programming language. The FDTD simulations were written based on equations (2) and 

equations (3) for computing the field components in 3-D FDTD and 2-D FDTD, 

respectively. These components will be utilized to calculate the Poynting vector based on 

equation (4) as a pixel by pixel in two-dimensional in the x-y plane whereas a voxel by 

voxel in three-dimensional in the x, y and z directions. The size of each cell was chosen 

as a uniform mesh in two and in three directions based on ten grid cells per wavelength 

which is required for accuracy and the time step must satisfy the Courant condition in 

order for the solution to be stable, which is provided by [1, 2]: 

∆t ≤
δ

c (n)1/2            (6) 

Where the δ is the space increment, c is the speed of light in space and n is the 

dimensionality of the problem such as n=2, 3 for simulating a two-dimensional and three-

dimensional systems, respectively.  

The FDTD simulation will consider the behaviour of electric and magnetic fields every 

time step due to exciting a domain and can study the effect of the boundary condition on 

the calculations by comparing the results of the simulations when including the ABC to 

obtain an accurate result and the simulation without including ABC. The latter will affect 

the calculation and the accuracy of the calculations as the EM wave when reaching the 

end of a domain, the wave reflects back in space. Therefore, we have studied the 

propagation behaviour of the TMz wave without ABC and with Mur’s ABC. The purpose 

of the numerical example is to demonstrate the performance of the Mur’s ABC. The 

numerical results of the TMz mode showed that the source of excitation generated the 

wave and spread on the x-y plane by using a sinusoidal wave with frequency 2 GHz 

propagating in the x-y plane in 2-D and all snapshots are taken at 500 time steps. From 

figure 1 can demonstrate that how the TMz wave propagate in free space and once the 

waves reaching the boundary, the waves will hit the walls and then reflecting back to the 

domain and propagating everywhere in the problem space then producing the reflection 

patterns. It can be clearly seen that there are significant differences in the distributions 

between the simulations as well as the simulation without the ABCs affected a uniformity 

of the distribution of the Poynting vector. The reflection patterns appeared in the space as 

shown in figure 1. This pattern can be removed by applying the Mur’s absorbing boundary 

condition, figure 2 shows the performance of the ABC when applying the equation 5 

which found to be worked perfectly as generated the circular patterns and the grid 

appeared to extend into infinite. It can be said that we simulated an open domain and the 

example is applied to validate the implementation of the ABC and the numerical 

calculations have illustrated that the circular patterns produced when the wave spreading 

out from the source even though the waves reached at all edges, because waves absorbed 

by the ABCs. The boundary condition is very significant in the calculations in the FDTD 

and we used the Mur’s absorbing boundary condition in three-dimension case as well to  
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reduce any reflections come from boundary to obtain good and an accurate distribution. 

Therefore, the results obtained in three dimensions case will demonstrate the circular 

patterns that can be observed in the calculations as demonstrated below i.e., the signals 

are absorbed by the boundary condition when reached at all boundaries. Moreover, we 

can simulate a computational domain with the obstacle included in a space. There are 

many type of obstacles can be included in the computational domain in term of the shapes. 

We can use of perfect electric conductor (PEC) obstacles which have inserted in the 

domain as different shapes such as small square, circular, two parallel strips and triangle 

as shown in figure 3 (A, B, C and D). The domain in 2-D FDTD is discretized into 100 ×
100 cells in each example. We demonstrated the effect of a PEC obstacle on the 

distributions as the EM waves interact with a PEC obstacle by scattering, reflection and 

diffraction. The diffraction case can be achieved when an obstacle or an aperture of shape 

is located between the source of an excitation and point of observation i.e., the diffraction 

will generate when the waves come cross a single slit, double slit or an obstacle in a space. 

This will cause the waves bend around the obstacles or during an aperture. The diffraction 

will allow the wave to transmit its energy around obstacles. Therefore, the purpose to 

include the obstacle in each calculation is that to observe the distribution of the Poynting 

vector when placing different shape in 2-D as well as in 3-D model. Therefore, we have 

made of two similar simulations in 2-D, the first case is the simulation without an obstacle 

as shown in figure 4 compare with the  second case which is the simulation with including 

an obstacle such as a small square as shown in figure 5. It was noted that the distributions 

of the Poynting vector components affected when the waves reached the small square, the 

waves are scattered by the obstacle. This simulation should be compared with example 

when increased the size of the obstacle as illustrated in figure 6. It can be noted that the 

solution of the field reached the sinusoidal steady state response as the wave updated 

behind the structure and small values appeared in each pixel and this is known as the 

diffraction when the waves passing around an obstacle or during a hole while the 

phenomenon of reflection occurs when the wave propagating from a one medium 

boundary to second medium boundary, but in this study we have a PEC boundary as a 

second medium which will cause to generate total reflections as there is no penetrations 

will be seen inside an obstacle. This means that there is no transmission wave travelling 

into a second medium. This is due to the fact that the electric field components set to be 

equal zeros at regions of the obstacles. The interference patterns can be produced when 

an incident waves hitting an obstacle and then the waves were reflected back in space as 

shown in figure 5 and figure 6. Moreover, the example is given in figure 3 (C) was 

simulated by constructed the two parallel strips made of the PEC opened from both sides 

and inserted in the middle of a problem space. The domain can be excited by a point 

source placed at the left side of the structure.  

From figure 6, there is a shadow area is clearly appeared behind the obstacle, this can 

be observed when increase the size of the obstacle, it can be seen that more reflection 

occurred on the front of the obstacle as the incident wave propagated in a domain until 

hitting the obstacle and then reflected to a problem space. It can be seen that the EM 

waves  diffracted  when  propagating  within a  domain  included  obstacle and  bending  
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around PEC obstacle as the wave updated in each pixel behind the obstacles, it is possible 

to obtain the signals behind the obstacle by recording the signals during a simulation as 

shown in figure 7 (A and B) which is demonstrated that the simulations reached a steady 

state to ensure accurate results and by increasing the size of the obstacle, the amplitude 

of the signal decreased. Figure 8 shows that one of the main results of the interaction of 

electromagnetic waves with obstacles, the diffraction can be seen and the example has 

shown that the waves excited in a problem space and propagated between two strips until 

reached the end of the structure after that start spreading out of the slit. This arrangement 

is demonstrated that the wave will bend when it reaches the strips on the left side of the 

structure and then the wave propagated within strips as well as steady state behaviour is 

reached. This result means that the structure appeared as a new source to transmit the 

signal from the left side to right side within the strips and this is due the use of two parallel 

strips have properties of PECs. Moreover, in the next example the source was inserted 

between two parallel strips, it can be noted that the components of Poynting vector 

appeared identical, this means that the waves are propagating bilaterally between the 

strips. This means that the same energy transmitted on the left side is generated on right 

side and the distribution appeared as spherical waves as shown in figure 9. By comparing 

figure 8 with figure 9, it can be seen that different distributions generated in the image, 

this is due changing the location of the excitation source. In the first case the source placed 

outside the structure while second case the source placed between the two parallel strips. 

Furthermore, it can be made a comparison between the simulations results when placing 

different obstacle shape in space as the example the Poynting vector was affected when 

placed a triangle in the space. It can be noted that the signals propagated everywhere in a 

space and when reached the obstacle split to propagate into the upper and lower regions 

of the obstacle and generated the same patterns and the similar wave produced as shown 

in figure 10. Furthermore, when we placed in a domain such as a triangle as shown in figs 

11 and 12, the Poynting vectors distributions are slightly different when making a 

comparison with simulations results that are shown in figure 11 and figure 12. The only 

difference is that the obstacle in figure 11 caused more scattering in lower regions 

compared with obstacle in figure 12 which is caused more scattering in the upper region. 

Therefore, by comparing when flipping the obstacle structure, the EM field’s patterns 

varied. Moreover, the simulation results indicate that it seems that combine figs 11 and 

12 to generate the similar result that produced in figure 10. This means that the incident 

waves affected in the upper and lower regions in space. Therefore, it can be observed that 

the intensities of Poynting vector appeared identical when comparing the lower region 

with upper region from the middle of a domain in both simulations but when increasing 

the size of obstacle the interference patterns can be clearly observed and the interference 

patterns appeared as the incident wave excited by a source in a problem space and the 

wave propagate until hitting the obstacle then reflected back to the domain and then two 

waves added together in the same medium. The interference can be constructive or 

destructive and the interference will cause to vary the intensities of each component. 

Furthermore, we have done the similar calculations in 3-D FDTD, the domain is 

discretized  into 100 × 100 × 100  uniform cells in the x, y and z  directions after that a  
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triangle shape placed in centre of the space in three dimensions as shown in figure 13 (A). 

Figure 14 shows the example of the images produced in the 3-D FDTD and the snapshots 

are taken at 250 time steps and circular radiation patterns appeared in the results. This can 

be indicated that the first order Mur’s absorbing boundary condition (ABC) is an efficient 

to apply to absorb the EM field at boundaries in three dimensions problem. Figure 15 is 

displayed the field components and can be noted that there are no the electric or magnetic 

fields produced in the obstacle, this is due to the fact that the obstacle has property of the 

perfect electric conductors (PECs).Therefore, two different obstacles shapes included in 

the FDTD domain as shown in figure 13 (A and B). This will vary the distributions of the 

fields in the domain as can be clearly seen that there are two distributions generated in 

the space as can be seen in figure 14 and 15. The difference in the numerical results 

between figs 14 with 15 can be observed as more signals generated behind the second 

case as shown in figure 15 and the lower part is cut from the middle of the structure and 

there is no PEC which it is filled by a free space. It can be compared the results of 

simulations of the 2D FDTD with 3-D simulations when placed the triangle shape as 

shown in figure 10 and figure 14. It can be noted that high amplitude of signals generated 

between the obstacles and the source of excitation compared with behind the obstacles 

and also the shadow regions clearly appeared in the images in two simulations as there 

are less signals generated in this area. This is because there are no signals propagated 

inside the obstacles. Moreover, the example for two parallel strips in three-dimensional 

when including in a domain as shown in figure 16 and exciting the problem space by a 

source located between the two strips. The result of the simulation showed that the wave 

is propagating bilaterally. This achieved simulation result is a quite similar to the one 

observed in 2-D FDTD simulation as have demonstrated in figure 9. 

 
Figure 1. Snapshots of Poynting vector (Watt/m2) taken at 500-time steps, without 

including an absorbing boundary condition (ABC) in the computational domain in 2-D 

FDTD domain. 
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Figure 2. Snapshots taken at 500 time steps and the computational domain is terminated 

by the first-order Mur’s ABCs in 2-D FDTD domain. 

 

 
Figure 3. Two-dimensional: Four different obstacles are located in the centre of the 

domain and the obstacles have property of the perfect electric conductor (PEC). The 

FDTD cell is equal to a one-tenth of the wavelength of interest. 
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Figure 4. The source of excitation is placed on the left side of a domain without including 

an obstacle in space in 2-D FDTD domain. 

 
Figure 5. An obstacle as a square shape is located at the centre of a domain in 2-D FDTD. 
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Figure 6. An obstacle as a circular shape is placed at the centre of a domain in 2-D 

FDTD. 

 
Figure 7. Signals were recorded behind the obstacles, exactly between the obstacle and 

the right side of the computational domain: A) the first case behind the square obstacle 

and B) second case behind the circular obstacle. 
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Figure 8. The source of excitation is placed between the left boundary and two parallel 

strips. The wave is concentrated to propagate between two strips in 2-D. 

 
Figure 9. the source is placed between two parallel strips at the centre of a domain in 2-

D FDTD. 
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Figure 10. Triangle obstacle shape is placed at the centre of a domain in 2-D. 

 
Figure 11. Triangle obstacle shape is placed at the centre of a domain in 2-D. 
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Figure 12. Triangle obstacle shape is placed at the centre of a domain in 2-D. 

 

 

 
Figure 13. The implementations of two different shapes of obstacles have the electric 

property of a PEC placed at the centre of a domain. The obstacles constructed in the 

computational domain as a mesh mode in 3-D FDTD. 
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Figure 14. Triangle obstacle shape set as a PEC in domain in 3-D FDTD. 

 

 
Figure 15. Triangle obstacle shape set as a PEC in domain in 3-D FDTD. 
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Figure 16: The source of excitation is placed in the middle of two parallel strips in 3-D 

FDTD domain. 

 

Conclusion 

 

We have demonstrated a solution of the Maxwell’s equations by applying the FDTD 

method. Many different cases have been reported in this work describing the distributions 

of Poynting vector of EM waves in free space when the EM waves interacted with the 

obstacles included in a domain. It was found that the FDTD method is extremely useful 

to apply for solving Maxwell’s equations numerically as it is difficult to solve otherwise. 

The problem analytically as well as the first-order Mur’s absorbing boundary condition 

approach is proved to be an efficient condition to improve the FDTD numerical 

performance and also saved the computational time. 
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