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Abstract 
The main purpose of this project is to design, verify and implement a 5 stages pipelined 

processor that used as embedded system, which is a subset of a 16-bit RISC (Reduced Instruction 
Set Computer) CPU (Central Processing Unit) architecture. The basic modules of this processor are 
programmed and simulated using Verilog HDL (Hardware Description Language), and implemented 
on Cyclone IV FPGA (Field-Programmable Gate Arrays) board.  

The Processor used as an embedded system in many applications like mobile computing, 
automobiles, industrial process controls, home appliances, office automation, and security etc, can 
be done by using processing element. Two commonly used processor architectures are CISC 
(Complex Instruction Set Computer) and RISC processor. The RISC processor uses large number of 
simple instructions and performs complex operations by using pipeline concept with improved 
performance. 
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Chapter 1: Introduction 

Among all kinds of CPUs in use, the RISC CPU has the majority market share. It is most commonly 
used in embedded systems, which are in almost every consumer product on the market. RISC CPUs are 
basic and offer low-power consumption and small size. They are sometimes referred to as load-store 
processor because of the basic mechanics upon which it operates. The idea of the RISC CPU is to reduce 
the complexity of the system and increase the speed. Any complex operation can be split into smaller chunks 
that can be calculated simultaneously in most cases. Other important features of the RISC CPU include 
uniform instruction coding, which allows faster coding. A good example is that the opcode (operation code) 
is always in the same bit position in each instruction, which is always one word long. Another advantage is 
a homogeneous register set, which allows any register to be used in any context and simplifies compiler 
design. Lastly, complex addressing modes are replaced by sequences of simple arithmetic instructions. The 
convenience of the RISC processor is a direct explanation for why it dominates the CPU market. 

 

Figure 1. Appearance of CPU  

According to the characteristics of the executed instructions, the CPU is divided into RISC and CISC 
two. Table 1 compares the characteristics of RISC and CISC, and gives their representative products.  

Table 1. Comparison of RISC and CISC 

 Command 
function 

Number of 
instructions 

hardware high speed # of instructions performing 
same processing 

Representative products 

RISC simple Few Simple Suitable for many IBM Power, Sun MicroSystems 
SPARC, MIPS, ARM, etc. 

CISC complex many complex Not suitable few Intel i386, 1BM System/360, 
DEC PDP, etc. 

The instruction function of the RISC class CPU is simple and there are few types. Correspondingly, 
the instruction functions of CISC class CPUs are complex. The advantage of RISC instruction 
simplification is that the internal structure of the CPU can be simplified, which is suitable for high-speed 
operation. But when doing the same operation, since each instruction is functionally simple, it needs to use 



more instruction count than CISC. Although the internal structure of CISC is complex and not suitable for 
high-speed operation, the number of instructions for the same processing is less than that of RISC. 

The biggest feature of the RISC architecture is that it only uses load and store instructions to access memory. 
This architecture is called Load/Store Architecture. The advantage of this is that the instruction set and 
pipeline design can be simplified. In this architecture, operation instructions can only operate on the data 
in the register. 

MIPS stands for (Million Instructions Per Second) is a family of RISC ISA (Instruction Set Architectures). 
The MIPS processor, designed in 1984 by researchers at Stanford University, is a RISC processor. 
Compared with their CISC counterparts (such as the Intel Pentium processors), RISC processors typically 
support fewer and much simpler instructions. 

The premise is, however, that a RISC processor can be made much faster than a CISC processor because 
of its simpler design. These days, it is generally accepted that RISC processors are more efficient than CISC 
processors; and even the only popular CISC processor that is still around (Intel Pentium) internally 
translates the CISC instructions into RISC instructions before they are executed. 

RISC processors typically have “load-store architecture”. This means there are two instructions for 
accessing memory: A load instruction to load data from memory and a store instruction to write data to 
memory. It also means that none of the other instructions can access memory directly. 

The instruction pipelining is a technique that is used to execute multiple instructions. The advantage of this 
technique is that it allows a faster throughput. In pipelining, the instruction execution is usually divided into 
stages. The number of stages varies depending on implementation. In our case, we have a five-stage 
pipelined structure. The instruction is split into five different steps which can be executed in parallel and 
the instructions can be processed concurrently, i.e., starting one instruction before finishing the previous 
one. 

The main aim of the project is to design a 16-bit pipelined processor. Verilog HDL is used as the hardware 
description language for writing the modules. The length of instruction and registers is 8 bits long. The 
modules are simulated and the final results of the simulation are analyzed. The designed processor runs 
fixed point integer arithmetic and logical instructions, branch instructions, and integer load/store 
instructions. 

1.1 Requirements  
Apart from developing only a conceptual model, we propose implementing our design practically to 

develop a prototype. Following this, we state the following requirements for a successful project 
implementation: 

• Software Requirements: 
• ModelSim HDL Simulator 
• Quartus II 

• Language Proficiency: 
• Verilog 

• Hardware environment: 



• DE2i-150 FPGA Development Board module (Cyclone IV EP4CGX150DF31) device 

1.2 ModelSim HDL Simulator  
Modelsim is a program created by Mentor Graphics used for simulating behavioral, RTL, and gate-

level code, including VHDL and Verilog gate libraries, with timing provided by the standard delay format 
(SDF). It is the most widely use simulation program in business and education.  

Simulation is a critical step in designing FPGAs and ASICs. Simulation allows the designer to stimulate 
his or her design and see how the code that they wrote reacts to the stimulus. A great simulation will exercise 
all possible states of the design to ensure that all input scenarios will be handled appropriately. 

 

Figure 2. ModelSim Simulator 

1.3 Altera Quartus II 
Altera Quartus is programmable logic device design software produced by Altera Quartus enables 

analysis and synthesis of HDL designs, which enables the developer to compile their designs, perform 
timing analysis, examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the 
target device with the programmer. Quartus includes an implementation of VHDL and Verilog for hardware 
description, visual editing of logic circuits, and vector waveform simulation. 



 

Figure 3. The main Altera Quartus II display 

1.4 Verilog HDL Language 
Verilog HDL is one of the most popular HDL languages developed by Gateway Design Automation 

as a proprietary language for logic simulation in 1984. The language became an IEEE standard in 1995 
(IEEE STD 1364) and was updated in 2001 and 2005. 

Verilog HDL language is a case-sensitive language. Used for describing a digital system like a network 
switch or a microprocessor or a memory or a flip−flop. It means, that by using an HDL we can describe 
any digital hardware at any level. Designs, which are described in HDL are independent of technology, 
very easy for designing and debugging, and are normally more useful than schematics, particularly for large 
circuits. 

Verilog HDL is commonly used to write text models that describe a logic circuit. Such a model is processed 
by a synthesis program, only if it is part of the logic design using simulation models to represent the logic 
circuits that interface to the design. This collection of simulation models is commonly called a testbench. 

Verilog HDL language can be used for RTL (register transfer level) circuit design with a high degree of 
abstraction. RTL is a design model that describes circuit actions according to signal flow between registers 
and circuit logic.  One can design hardware in a Verilog HDL IDE (for FPGA implementation such as 
Xilinx ISE, or Altera Quartus) to produce the RTL schematic of the desired circuit. After that, the generated 
schematic can be verified using simulation software which shows the waveforms of inputs and outputs of 



the circuit after generating the appropriate testbench. To generate an appropriate testbench for a particular 
circuit or Verilog HDL code, the inputs have to be defined correctly. For example, for clock input, a loop 
process or an iterative statement is required. 

The key advantage of Verilog HDL when used for systems design is that it allows the behaviour of the 
required system to be described (modelled) and verified (simulated) before synthesis tools translate the 
design into real hardware (gates and wires). 

Another benefit is that Verilog HDL allows the description of a concurrent system (many parts, each with 
its sub-behaviour, working together at the same time). Verilog HDL is a Dataflow language, unlike 
procedural computing languages such as BASIC, C, and assembly code, which all run sequentially, one 
instruction at a time.   

1.5 DE2i-150 FPGA Board  
FPGA stands for field-programmable gate array. At its core, an FPGA is an array of interconnected 

digital subcircuits that implement common functions while also offering very high levels of flexibility.  
Where the user can program what the logic gate does (be it a NAND or NOR or some form of SUM-of-
PRODUCT implementation) or an adder, you as a user, can “program” the chip to perform that logic 
function. Now we can add another layer of user programmability – you can program how these logic gates 
are connected! In that way, we have a general programmable logic chip. Unlike the microprocessor where 
the program is just the instruction to fix digital hardware, here you can program the hardware itself! 

The first FPGA was introduced by Xilinx in 1985. It has arrays of logic blocks that are programmable. It is 
surrounded by PROGRAMMABLE ROUTING RESOURCES, which allows the user to define the 
interconnections between the logic blocks. It also has lots of very flexible input and output circuits that 



programmable for TTL (Transistor-Transistor Logic), CMOS (Complementary Metal Oxide 
Semiconductor) , and other interface standards. 

Nowadays, there are two major players in the FPGA domain: Xilinx and Altera (now part of Intel). These 
two companies dominate 90% of the FPGA market with roughly equal shares. 

 

Figure 4. The DE2i-150 board (top view) 

At this point when a Verilog HDL model completed here, we translate it into “gates and wires” that are 
mapped onto the programmable logic device such as a DE2i-150 FPGA, then it is the actual hardware being 
configured, rather than the Verilog HDL code being “executed” as if on some form of the processor chip.  

 
Figure 5. Basic Design Methodology. 



Chapter 2: Design Methodology 

A Pipelined Processor Design is referred to as a Pipelined CPU. The CPU is a device that executes 
various software instructions and data processing. In designing a CPU, we must first define its instruction 
set and how many instructions do we want? What are the instructions? What opcode do we assign to each 
of the instructions? How many bits do we use to encode an instruction? Once we have decided on the 
instruction set, we can proceed to design an architecture that can execute all the instructions in the 
instruction set. In this step we are creating a custom structure, so we need to answer questions such as How 
many registers do we need? Do we use a single register file separate register? How the different units are 
connected? Finally, we can design the control unit. Just like the dedicated processor, the control unit asserts 
the control signals to the processor. This finite state machine cycles through two main states: 1) idle; 2) 
execute. The control unit performs these states by sending the appropriate control signals to the processing. 
And the processor consists of general-purpose registers and various special-purpose registers such as PC 
(Program counter). 

 The five-stage design of the processor is similar to the MIPS architecture, it is designed according to the 
pipeline structure. As long as the CPU obtains data from the memory, the execution of each MIPS 
instruction is divided into five flowing stages, and each stage takes up a fixed time, usually only one 
processor clock cycle. 

 

Figure 6. Single-Cycle CPU logic architecture 

When the processor is designed, the execution phase of the processor is divided into the following five 
stages: 

1. IF: Instruction Fetch. Get the next instruction from the instruction memory 
2. ID: Instruction Decode (Read Register). Translate instructions, identify opcodes and operands, and 

read data from the register heap to the ALU input register. 
3. EX (ALU): Execute, (arithmetic/logical operation). Complete arithmetic or logical operations in a 

clock cycle. Note that floating-point arithmetic and integer multiplication and division operations 
cannot be completed in a single clock cycle which we didn’t use in our design. 

4. MEM: Memory Access, memory data read or write. At this stage, instructions can read/write 
memory variables from data memory. On average, about three-quarters of instruction do not 
perform any operations at this stage. This stage is assigned to each instruction to ensure that no two 
instructions will access the data cache at the same time. 

5. WB: Write Back. After the operation is completed, write the calculation results from the ALU 
output register back to the general register. 
 

 



2.1 Datapath 
The Datapath is responsible for the manipulation of data. It includes ALU, registers, memory 

elements for the temporary storage of data, buses, and multiplexers for the transfer of data between the 
different components in the Datapath. External data can be entered into the Datapath through the data input 
lines. Results from the computation are provided through the Datapath output lines.  

For the Datapath to function correctly, appropriate control signals must be asserted at the right time. Control 
signals are needed for all the select and control lines for all the components used in the Datapath. This 
includes all the select lines for multiplexers, ALU, and other functional units having multiple operations, 
all the read/write enable signals for registers and register files, address lines for register files, and enable 
signals for tri-state buffers. The operation of the Datapath is determined by which control signals are 
asserted and at what time. In a processor, these control signals are generated by the control unit. In return, 
the Datapath needs to supply status signals back to the control unit for it to operate correctly. These status 
signals provide input information for the control unit to determine what operation to perform next. Since 
the Datapath performs all the functional operations of a processor, and the processor is for solving problems, 
therefore the Datapath must be able to perform all the operations required to solve the given problem. For 
example, if the problem requires the addition of two numbers, the Datapath, therefore, must contain an 
Adder. If the problem requires the storage of three temporary variables, the Datapath must have three 
registers.    

However, even with these requirements, there are still many options as to what is implemented in the 
Datapath. Registers can be separate register units or combined in a register file. Furthermore, two temporary 
variables can share the same register if they are not needed at the same time. Datapath design is also referred 
to as the register-transfer level (RTL) design. In the register-transfer level design, we look at how data is 
transferred from one register to another or back to the same register. If the same data is written back to a 
register without any modification, then nothing has been accomplished. So before writing the data to a 
register, the data passes through one or more functional units and gets modified. The time from the reading 
of the data to the modifying of the data by functional units and finally to the writing of the data back to a 
register must all happen within one clock cycle.  

The Top-view of the design should look as follows, in which select_out selects the output signal is related 
to the CPU board-level test by using 7-segment light.   

 

Figure 7. CPU top view 

 



According to the Top view, the entire Processor is divided into 6 modules: 

1. Processor main module: perform arithmetic processing with the instructions obtained from the 
instruction memory, and write or read data from the data memory. This is the core part. 

2. Instruction Memory instruction module: Provide instructions for the Processor module, so that 
the Processor can find the memory address of the instruction through the value in the instruction 
register, thereby reading the instruction. 

3. Data Memory data module: Processor reads data or writes data. 
4. Clock Generator: is an electronic oscillator that produces a clock signal for use in synchronizing a 

circuit’s operation.  
5. Processor Controller: It is used to control the processor execution by the clock 
6. 7-Segment Interface: a seven-segment display is a form of an electronic display device for 

displaying decimal numerals that are an alternative to the more complex dot matrix displays. 

2.2 The Instruction Set Architecture  
The instruction that we used is in three-address format, and the opcode length is 4 bits. According to 

the different operands, the instruction can be divided into three types, namely the register type (R type), the 
immediate type (I type), and the Jump type (J type).  

There 8 general-purpose registers that are 16-bit long. These registers are used by the fixed point integer 
instructions. The general-purpose registers are selected by the 3-bit address in the register field in the 
instruction. Each of the general-purpose registers is used to store the result of the operations performed by 
the instruction. All the data manipulation is done in the registers which are internal to the processor. 

The number of instructions implemented determines the number of bits required to encode all the 
instructions. All instructions are encoded using 4-bit except for instructions that have a memory address as 
one of its operands, in which case a second byte for the address is needed. The encoding scheme uses the 
first four bits as the opcode. Depending on the opcode, the last twelve bits are interpreted differently as 
follows. 



Table 2. The Instruction set Format 

 

The instructions that our processer can execute and the corresponding encoding are 8 instructions defined 
in Table 2. and the remaining 8 unused opcodes (0000, 0100, 0101, 0111, 1001, 1011, 1100, 1110) can be 
supplemented by other operations, such as add-immediate ADDI, sub-immediate SUBI, and OR operation. 
The Instruction column shows the syntax and mnemonic to use for the instruction when writing a program 
in Verilog language. The Encoding column shows the binary encoding for the instructions and the 
Operation column shows the binary encoding for the instructions and the Operation column shows the 
actual operation of the instruction. The instructions are separated into four categories:   

1) Arithmetic and logical instructions for performing arithmetic and logic;  
2) Data movement instructions (Load/Store Instructions) for transferring data between the 

accumulator, the general registers, and memory ; 
3) Jump instruction for changing the instruction execution sequence; and 
4) Miscellaneous instruction. 

Table 3. 16-bit Instruction set encoding 

Instruction Operand1 Operand2 Operand3 Opcode Operation 

Arithmetic and logical instructions  

ADD Rs Rt Rd #1000 𝑅𝑅𝑅𝑅 ← 𝑅𝑅𝑅𝑅 + 𝑅𝑅𝑅𝑅 

SUB Rs Rt Rd #1010 𝑅𝑅𝑅𝑅 ← 𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅 

AND Rs Rt Rd #1101 𝑅𝑅𝑅𝑅 ← 𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎𝑅𝑅 𝑅𝑅𝑅𝑅 

XOR Rs Rt Rd #1111 𝑅𝑅𝑅𝑅 ← 𝑅𝑅𝑅𝑅 𝑥𝑥𝑥𝑥𝑥𝑥 𝑅𝑅𝑅𝑅 

Data movement instructions 

LOAD Rs Rt val3 #0010 𝑅𝑅[𝑅𝑅𝑅𝑅] ← 𝑚𝑚[𝑅𝑅𝑅𝑅 + 𝑣𝑣𝑎𝑎𝑣𝑣3] 

STORE Rs Rt val3 #0011 𝑚𝑚[𝑅𝑅𝑅𝑅 + 𝑣𝑣𝑎𝑎𝑣𝑣3] ← 𝑅𝑅𝑅𝑅 

Jump instruction 

JUMP  val2 val3 #0110 𝑗𝑗𝑗𝑗𝑚𝑚𝑗𝑗 𝑅𝑅𝑥𝑥 {𝑣𝑣𝑎𝑎𝑣𝑣2, 𝑣𝑣𝑎𝑎𝑣𝑣3} 



Miscellaneous 

HALT    #0001 ℎ𝑎𝑎𝑣𝑣𝑅𝑅 

There are two data movement instructions, one jump instruction, four arithmetic and logic instructions, and 
a miscellaneous instruction. 

2.2.1 Two Operand Instructions 

The Arithmetic instructions perform addition and subtraction. These instructions use general-
purpose registers as their source and destination operands. Arithmetic instructions support both signed 
and unsigned operations. This carry is stored in the carry bit in a buffer register. If the carry flag buffer 
(CF buff) in the instruction is 1, then the Carry Flag of the condition register is updated. If the result of 
the arithmetic operation is zero, Zero Flag is set to 1. For the signed operation, the Negative Flag is set to 
1 when the MSB is set to 1. 

The Logical instructions are used to perform the logical operations such as logical AND and logical XOR. 
These instructions perform on the 16-bit operands.  

If the instruction requires two operands, it allows the use of the accumulator (register A) for one operand. 
And the second operand is register B, then the last four bits in the encoding specify the register file number. 
An example of this is the LOAD (load accumulator from the register) instruction where it loads the 
accumulator with the content of the register file number specified in the last three bits of the encoding. 
Another example is the ADD instruction where it adds the contents of the accumulator with the content of 
the specified register file and put the result in the accumulator. 

2.2.2 Instructions Using a Memory Address 
For instructions that have a memory address as one of its operands, an additional 8 bits are needed 

to access the 265 bytes of memory space. These 8 bits (xxxx_xxxx) are specified in the 8 least significant 
bits of the second byte of the instruction. An example is the Load/Store instruction. The address of the 
memory location where the data is to be loaded/stored, where is specified in the second byte. 

2.2.3 Jump Instruction 
For jump instructions, the last four bits of the encoding also serve to differentiate between absolute 

and relative jumps. If the last eight bits are zeros, then it is an absolute jump, otherwise, they represent a 
sign and magnitude format relative displacement from the current location as specified in the PC. For 
example, the two-byte encoding 0110 0000 0000 0100 specifies an absolute unconditional jump to memory 
location 4.  The first four bits (0110) specify the unconditional jump  

The jump instruction transfers the program sequence to the memory address given in the operand 
based on the specified flag. Jump instructions are of two types: Unconditional Jump Instructions, and 
Conditional Jump Instructions. Unconditional Jump Instructions: Transfers the program sequence to the 
described memory address. 

 



2.3 Five-stage pipeline 
In addition to the instruction set, the most important thing in designing the CPU is the following 

block-level circuit diagram of the CPU. The code implementation of the five-stage pipeline was dependent 
on this diagram. 

 

Figure 8. CPU block-level circuit diagram 

The circuit diagram is not complicated. The CPU is nothing more than a combination of combinational 
logic circuits and sequential circuits. All the rectangles in the diagram mark the registers inside the CPU. 
The entire circuit diagram shows the flow of instructions and data inside the CPU. At each rising edge of 
the clock, the data of the register of the upper-stage pipeline will flow to the register of the next-stage 
pipeline through the intermediate combinational logic circuit. Therefore, a machine instruction is executed 
after 5 clock cycles. A brief description of the execution process of instruction is to first fetch an instruction 
from the memory according to the value of the PC, decode the instruction to extract two operands for 
operation, and decide whether to access the data memory and how to access it according to the instruction 
function and operation result, and finally according to the instruction. The function determines whether to 
perform a write-back operation, that is, to modify the value of the register. 

The following will explain the CPU control and the behavior of each stage of the five-stage pipeline. 

2.3.1 CPU control 
The CPU control is naturally based on the finite state machine. There are only two main states: idle 

and execute. In the idle state, the CPU can enter the execute state only if enable and start are enabled at the 
same time.  



 

Figure 9. CPU control state diagram 

2.3.2 Instruction Fetch 
The Instruction Fetch (IF) stage is timing logic, each rising edge the CPU should read the 

instruction to be executed from the instruction memory, according to the value of the PC which holds the 
address of the instruction to be executed, and set the value of the PC in the next cycle (the instruction is 
read by outputting the value of the PC register to the instruction memory, and the memory returns the 
instruction in the address corresponding to the value which can be executed sequentially or jump to a 
specific address).in jump instruction, The transfer instruction directly jumps and handles the case that the 
pc value is delayed by one cycle, and the other case directly reads the next instruction. 

 

Figure 10. IF stage 



Because reading memory is a function implemented by the memory module, the CPU only needs to give 
the instruction address instrucM_addr to get the corresponding instruction instrucM_INP.  

2.3.3 ID 
In the ID stage, the CPU needs to decode or extract the corresponding operand from the instruction 

according to the function of the instruction (i.e., the opcode). The operand may come from general-purpose 
registers R [0]-R [7], or it may be an immediate value. There are many kinds of instructions, including 
instructions for performing various operations, instructions for controlling the next command, instructions 
for reading and writing memory, and instructions for controlling the CPU. In addition, if the instruction is 
a STORE instruction, also prepare the data to be stored in memory. These instructions are decoded by a 
module in the CPU called an instruction decoder. 

 

Figure 11. ID stage 

2.3.4 EX 
The EX-stage, the CPU executes and processes the ALU operation determined by the decoder and 

the flag register will setting. In addition, the CPU can read and process data from internal storage registers 
or external memory, and then write the results back to the register C1 or memory, if it is the STORE 
instruction, the memory write enable signal dw and the data saveM_dir2 to be written to the memory should 
also be given. 



 

Figure 12. EX stage 

When reading an instruction, the CPU outputs the value of the PC register to memory, and then retrieves 
the corresponding instruction from memory. The fetched instruction is stored in the instruction register, and 
instruction decoding is to decode the instruction stored in the instruction register to determine the operation 
to be processed. In most cases, while determining the operation to be processed, the CPU reads the data to 
be used by the operation from general-purpose registers. When the instruction is executed, the operand 
value is fetched from the general-purpose register, processed by the arithmetic unit, and the result is written 
back. The result of an operation performed by the CPU can be written back to a general-purpose register or 
to memory. The CPU can also read data from memory and return it as a result.  

ALU 

In computing, an Arithmetic Logic Unit (ALU) is a combinational digital circuit that performs arithmetic 
an bitwise operations on integer binary numbers. 

 



 

Signal name [size in bits] Description 

regB[16] Input data “regB”, from Reg [Rs] in most cases 

regA[16] Input data “regA”, from Reg [Rt] or the immediate in most cases. 

ALUout[16] Output data 

Op code [4] Generated by the control unit when the instruction currently in the ALU 
was in Decode 

Figure 13. ALU interface 

2.3.5 MEM 
In the MEM stage, it is necessary to decide whether to access the memory and how to access it 

according to the instruction function and the operation result of the previous stage (as the memory address 



during memory operation). It is only valid for instructions that require memory operations such as LOAD 
and STORE and, in the rest, pass reg_C to reg_C1. The cf carry flag is updated at this stage. 

 

Figure 14. MEM stage 

2.3.6 WB 
The Write Back stage also decides whether to modify the value of the register and how to modify 

it according to the function of the instruction and the result of the previous stage. It is only valid for 
instructions that need to modify the value of the register. Write back writes the calculation result to the 



value of the instruction. Except for the jump instruction and the load and store instructions, the first operand 
(register) is written back. and just keep the register unchanged in other cases. 

 

Figure 15. WB stage 

2.4 Memory 
Memory is the storage used to store runtime instructions (programs) and data. In order to distinguish it 

from the long-term storage of data and programs in a computer, memory is sometimes called main memory.  

Memory uses the concept of addresses to manage stored data. Addresses represent where data is stored, just 
like where data exist in. Each data unit has an address. In most cases, the data unit is one byte (8 bits) long. 
This method is called byte addressing. Figure 16 illustrates the relationship between memory and addresses.  

 

Figure 16.  Memory and Address 



The characteristic of memory is that the faster the speed, the higher the cost. Therefore, a hybrid architecture 
of various memory combinations such as "high-speed small-capacity", "medium-speed medium-capacity" 
and "low-speed large-capacity" is usually used. This construction is called a memory hierarchy. Figures 17 
are examples of memory hierarchies. 

 

Figure 17. Memory hierarchy 

At the storage level, the fastest are the registers in the CPU. The CPU is much faster than the memory, and 
the direct access to the memory by the CPU is less efficient. To improve the memory access speed, a high-
speed small-capacity memory called cache is added between the CPU and the memory. 

A cache can temporarily buffer data read from memory. When the CPU accesses the memory, if the required 
data has been saved in the cache, it can directly read from the cache to improve the access efficiency. 
According to the different capacities and speeds, the cache is also divided into multiple levels, usually the 
first-level cache, the second-level cache, and other levels.  

Memory is a reg array, with a combined logic circuit for reading memory and a timing circuit for writing 
memory. The initialization of memory can be initialized by a reset signal, or directly in the initial of the test 
bench file when software simulation. 

2.4.1 Instruction Memory 
The Instruction Memory stores all the prefetch instructions. It’s a Combination logic, according to 

the address read, output an instruction. It does need one read port, which will have 16-bit width (fetch one 
instruction at a time). The instruction Memory can model as having arbitrarily fast asynchronous reads. 

 



Signal name [size in bits] Description 

Address [16] Current instruction to fetch 

Read Data [16] Current instruction fetched 
Figure 18. Instruction Memory interface 

2.4.2 Data Memory 
You need three ports for writing data into memory, reading data from memory, and specifying 

memory addresses. The data input and output need 16 bits to match the register size. There are two other 
ports, one is to enable or disable write operation and the other is clock signal. 

Reading Data is a combinational logic, which directly reads the output of an instruction according to the 
address. 

Writing to Data is sequential logic, and may be written once per cycle. To write according to the we_in 
signal, the clock frequency of the Memory needs to be faster than the CPU clock. 

 

 Signal name [size in bits] Description 

dataM_INP[16] Data in Mem[address]. Output is still in the M stage if read asynchronously. 

dataM_addr[8] Address to perform the next read/write. 

dataM_out[16] Data to write to Mem[address]. 

we_in Set high if the unit should perform a write on the next clock edge. 

Div_clk Clock signal to synchronize writes. 
Figure 19. Data Memory interface 

Normally, the reset signal should push the memory back to a known state, with the specific implementation 
defining exactly how. It doesn’t matter if the design process resets synchronously or asynchronously. For 
simplicity, you may design under the assumption that reads are performed arbitrarily quickly without a 
clock, and writes are performed arbitrarily quickly after a clock edge. 



Design a unit-testing testbench for your memory unit. At a minimum, it should perform some reads to verify 
the initial state after a reset, some write to arbitrary addresses, and some later reads to verify correctly 
written data. 

2.5 Clock Generator 
For our system clock, we use the built-in 50MHz clock that is available on the development board. 

In order to see some intermediate actions by the CPU, we used a clock divider to slow down the clock. One 
control word is executed in one clock cycle. In one clock cycle, first data is read from a register, then it 
passes through functional units and gets modified, and finally, it is written back to a register. Performing 
both a read and write from/to the same register in the same control word, i.e., same clock cycle does not 
create any signal conflict because the reading occurs immediately in the current clock cycle and is getting 
the original value that is in the register. The writing occurs at the beginning of the next clock cycle after the 
reading.  

 

Figure 20. Clock Generation 

2.6 Processor controller 
The processor controller is used to control the running time of our processor. It consists of a clock, 

reset and trap as input the trap is work as the clock of the processor controller, and the output of the model 
is clk_ctrrl_processor to give a specific synchronization to the system. 

 

Figure 21. Processor controller 



2.7 Seven-Segment Interface 

In our design, we will interface 4-Digit 7-Segment to display the output according to the 
condition case. Each segment in a display is identified by an index from 0 to 6 by applying a low 
logic level to a segment that will light it up and applying a high logic level turns it off. 

 

Figure 22. Seven Segment Interface 

 

Figure 23. The 7-segment Display 

 

 

 

 



Chapter 3: Hazards Conflict  

In pipeline processing, due to the dependencies of various stages and the competition of hardware 
resources, the operation cannot be performed at the same time. The cause of pipeline failure is called a 
hazard. Hazard is divided into three types: structural hazard, data hazard, and control hazard. 

3.1 Structural hazard 
Due to the competition for hardware resources, the operation cannot be performed at the same time. 

Because the memory design adopts the separation of instruction memory and data memory, there will be 
no structural hazard. 

3.2 Data hazard 
          The hazard caused by the data required for the execution of the instruction is not yet prepared. When 
the instructions to be executed rely on the unprocessed data, the instructions will not be executed 
immediately, causing a data hazard. 

 

Figure 24. Data Hazard 

Data risk can be simply avoided by inserting NOP (No Operation), but this greatly reduces the performance 
of the assembly line. Another method is through data forwarding. Although the data is written back in the 
WB stage, the actual operating results have been determined at the EX-stage and can be passed to the next 
instruction. 



 

Figure 25. Data Forwarding 

An exception to data forwarding is the load instruction. because the load instruction to extraocular data 
from memory is only completed in the memory stage, and the next instruction has also come to the ex-
stage, which does not comply with data forwarding. The way to solve the LOAD adventure is to pause the 
mechanism, block the pipeline for one cycle, and continue to execute the instructions after LOAD in the 
next cycle. 

 

Figure 26. LOAD Hazard Delay Mechanism 



LOAD hazard is to detect in the IF stage. If there is currently a LOAD instruction that has entered the ID 
stage, and the next instruction (that is, the instruction in the IF stage) conflicts with it, it will block the 
pipeline for a period. The specific method is to Keep the PC value unchanged and insert the NOP instruction 
at the IF stage. 

3.3 Control hazard 
It is impossible to determine the hazard caused by the next command. When executing a branch 

instruction that may change the next instruction, the next instruction cannot be executed until the execution 
result of this instruction is determined, thus causing control hazards. Control hazard can also be avoided by 
inserting 3 NOP instructions after the branch instruction, but a more efficient method is to adopt static 
branch prediction, that is, assuming that the branch instruction is not transferred, the CPU continues to 
execute the instructions followed by the branch instruction. When the branch instruction is executed to the 
MEM stage, the result is determined. If the branch needs to be transferred, the empty pipeline at the IF, ID, 
and EX stages, re-read the instructions at the destination address of the transfer and start to execute 
sequentially. 

A jump flag register can be set up at the MEM stage, and the flag register is valid only if the branch 
instruction is confirmed to be a jump. If the flag register is valid, it will empty the pipeline IF, ID, and EX 
stages, to avoid modifying the values of zero, negative, carry flags, 8 general registers, and data memory in 
the EX, MEM, and WB stages. The specific method is to make an ID, EX, and MEM set as NOP, data write 
is not enabled, and it is also necessary to ensure that the PC is set as the jump destination address. 

 

 

 

 

 



Chapter 4: Simulation Result 

In the test, by inverting the clock every 5 ns, the CPU reverses from the trap every 20 ns, that is, the 
clock period is 20ns, and the memory clock is set to three clocks, that is, 15 ns, reversed once, through the 
output of the universal register used and the used Variables in data memory observe the process results of 
the entire CPU and test whether the CPU works correctly. And observe the change process of the simulation 
process to test whether the CPU works properly. 

4.1 Software simulation 
Instruction Memory: 

The following results are shown in hexadecimal. 

Instruction 0: Load the value of 0002 to regA. 
Instruction 1: Load the value of 0003 to regA. 
Instruction 2: Add values from R1 and R2, and the results are saved in R3. R3 should be 0000. 
Instruction 3: XOR values from R1 and R2 and the results are saved in R3. R3 should be FFF8. 
Instruction 4: Load the value of 0001 to regA. 
Instruction 5: Add values from R1 and R2, and the results are saved in R3. R3 should be DECE. 
Instruction 6: Save the value of 0002 to the data memory. 
Instruction 7: Add values from R1 and R2, and the results are saved in R3. R3 should be 0002. 
Instruction 8: AND values from R1 and R2, and the results are saved in R3. R3 should be ABC0. 
Instruction 9: Save the value of 0000 to the data memory. 
Instruction 10: Subtract from R2 and R1, and the result is saved in R3, and R3 should be ABC9. 
Instruction 11: XOR values from R1 and R2 and the results are saved in R3. R3 should be 5439. 

initial begin 
 

RAM[0]  <= {`LOAD, 1'b0, `R1, 1'b0, `R0, 4'b0010}; //load 2 in regA 
RAM[1]  <= {`LOAD, 1'b0, `R2, 1'b0, `R0, 4'b0011}; //load 3 in regA  
RAM[2]  <= {`ADD, 1'b0, `R3, 1'b0, `R1, 1'b0, `R2}; //regC= regB + regA 
RAM[3]  <= {`XOR, 1'b0, `R3, 1'b0, `R1, 1'b0, `R2}; //regC= regB ^ regA 
RAM[4]  <= {`LOAD, 1'b0, `R1, 1'b0, `R0, 4'b0001}; //load 1 in regA 
RAM[5]  <= {`ADD, 1'b0, `R3, 1'b0, `R1, 1'b0, `R2}; //regC= regB + regA 
RAM[6]  <= {`STORE, 1'b0, `R3, 1'b0, `R0, 4'b0010}; //store 2 in regA 
RAM[7]  <= {`ADD, 1'b0, `R6, 1'b0, `R1, 1'b0, `R4}; //regC= regB + regA 
RAM[8]  <= {`AND, 1'b0, `R3, 1'b0, `R2, 1'b0, `R1}; //regC= regB & regA 
RAM[9]  <= {`STORE, 1'b0, `R4, 1'b0, `R0, 4'b0000}; //store 0 in regA 
RAM[10] <= {`SUB, 1'b0, `R3, 1'b0, `R1, 1'b0, `R2}; //regC= regB - regA 
RAM[11] <= {`XOR, 1'b0, `R3, 1'b0, `R1, 1'b0, `R2}; //regC= regA=B ^ regA 
RAM[12] <= {`JUMP,12'b0000_0000_1111};             //jump to addres 15 
RAM[13] <= {`ADD, 1'b0, `R3, 1'b0, `R1, 1'b0, `R2}; // we jumped it 
RAM[14] <= {`LOAD, 1'b0, `R6, 1'b0, `R0, 4'b0000}; // we jumped it 
RAM[15] <= {`LOAD, 1'b0, `R7, 1'b0, `R0, 4'b0001}; // we jumped it 
RAM[16] <= {`SUB, 1'b0, `R3, 1'b0, `R1, 1'b0, `R2}; //regC= regB - regA 
RAM[17] <= {`AND, 1'b0, `R3, 1'b0, `R1, 1'b0, `R2}; //regC= regB & regA 
RAM[18] <= {`HALT, 12'b0000_0000_0000}; //stop 

end 



Instruction 12: Jump instruction, PC jumps to instruction 15. 
Instruction 13: This instruction will not be executed. 
Instruction 14: This instruction will not be executed.  
Instruction 15: The instruction is not executed. 
Instruction 16: Subtract from R2 and R1, and the result is saved in R3, and R3 should be 0001. 
Instruction 17: AND values from R1 and R2, and the results are saved in R3. R3 should be ABC9. 
Instruction 18: Termination Detective.  

Result Analysis 

1. Instructions 0~4, two consecutive LOAD instructions. The value taken by LOAD from Data 
Memory has not returned to the general register. The ADD and XOR Instructions in the next cycles 
need to take the corresponding value from the register, so Hazard is generated, but there is no way 
for Data Forward, so use the Stall method to delay the next instruction for one period. Results R3 
got 0000, FFF8.  

2. Instructions 5~8, The value taken by LOAD from Data Memory has not returned to the general 
register. The ADD instruction in the next cycle needs to take the corresponding value from the 
register, so Hazard is generated, but there is no way for Data Forward. so, use the Stall method to 
delay the next instruction for one period. Results R3 got DECE. 

3. Instruction 9~12, Addition, calculate ABC1 + 0000, and get ABC1 stored in dm1. The SUB 
instruction subtracts 0000 – 0000 Results reg C got 0000. 

4. Instruction 13~15, test jump instructions, and the PC value jump from 13 to 15. Judging from the 
results. 

5. Instruction 16~19, Subtraction, Calculate ABC1 – FFF8 and get ABC9, and the result of AND 
instruction is ABC0. The Instruction HALT stops the program.  

Supplementary explanation: 

As a result, two PCs = 2, and two PCs = 5 are caused by the detection mechanism function in ISE 
(Information Sharing Environment). As long as there is a change in value in output, because the clock 
frequency of Memory is higher than that of the CPU. Therefore, the change of Memory precedes that in the 
CPU, and the situation is similar. The actual situation is one PC = 2, and one PCs = 5, of which is the Stall 
generated by the LOAD instruction, which is correct. Attached is a simulated waveform map: 

 #  pc : de_instrucReg :: ex_instrucReg :: mem_instrucReg :: wb_instrucReg :regB :regA :regC1:da:dd :w:regC2: R1 : R2 : R3 :dm0: dm1: dm2:cf:zf:nf 
#   x :xxxxxxxxxxxxxxxx:xxxxxxxxxxxxxxxx:xxxxxxxxxxxxxxxx:xxxxxxxxxxxxxxxx:xxxx :xxxx :xxxx :xx:xxxx:x:xxxx:xxxx:xxxx:xxxx:ffff:abc1:ded6:x:x:x 
#   0 :0000000000000000:0000000000000000:0000000000000000:0000000000000000:0000 :0000 :0000 :00:0000:0:0000:0000:0000:0000:ffff:abc1:ded6:x:0:0 
#   1 :0010000100000010:0000000000000000:0000000000000000:0000000000000000:0000 :0000 :xxxx :xx:0000:0:0000:0000:0000:0000:ffff:abc1:ded6:x:0:0 
#   2 :0010001000000011:0010000100000010:0000000000000000:0000000000000000:0000 :0002 :xxxx :xx:0000:0:xxxx:0000:0000:0000:ffff:abc1:ded6:x:0:0 
#   2 :1000001100010010:0010001000000011:0010000100000010:0000000000000000:0000 :0003 :0002 :02:0000:0:xxxx:0000:0000:0000:ffff:abc1:ded6:x:0:0 
#   3 :1000001100010010:1000001100010010:0010001000000011:0010000100000010:0000 :0000 :0003 :03:0000:0:ded6:0000:0000:0000:ffff:abc1:ded6:0:0:0 
#   4 :1111001100010010:1000001100010010:1000001100010010:0010001000000011:fff8 :0000 :0000 :00:0000:0:fff8:ded6:0000:0000:ffff:abc1:ded6:0:1:0 
#   5 :0010000100000001:1111001100010010:1000001100010010:1000001100010010:ded6 :fff8 :fff8 :f8:0000:0:0000:ded6:fff8:0000:ffff:abc1:ded6:0:0:1 
#   5 :1000001100010010:0010000100000001:1111001100010010:1000001100010010:0000 :0001 :212e :2e:0000:0:fff8:ded6:fff8:0000:ffff:abc1:ded6:0:0:0 
#   6 :1000001100010010:1000001100010010:0010000100000001:1111001100010010:ded6 :fff8 :0001 :01:ded6:0:212e:ded6:fff8:fff8:ffff:abc1:ded6:1:0:0 
#   7 :0011001100000010:1000001100010010:1000001100010010:0010000100000001:ded6 :fff8 :dece :ce:0000:0:abc1:ded6:fff8:212e:ffff:abc1:ded6:1:0:1 
#   8 :1000011000010100:0011001100000010:1000001100010010:1000001100010010:0000 :0002 :dece :ce:fff8:0:dece:abc1:fff8:212e:ffff:abc1:ded6:1:0:1 
#   9 :1101001100100001:1000011000010100:0011001100000010:1000001100010010:abc1 :0000 :0002 :02:dece:1:dece:abc1:fff8:dece:ffff:abc1:ded6:0:0:1 
#   9 :1101001100100001:1000011000010100:0011001100000010:1000001100010010:abc1 :0000 :0002 :02:dece:1:dece:abc1:fff8:dece:ffff:abc1:dece:0:0:1 
#  10 :0011010000000000:1101001100100001:1000011000010100:0011001100000010:fff8 :abc1 :abc1 :c1:0000:0:0002:abc1:fff8:dece:ffff:abc1:dece:0:0:1 
#  11 :1010001100010010:0011010000000000:1101001100100001:1000011000010100:0000 :0000 :abc0 :c0:dece:0:abc1:abc1:fff8:dece:ffff:abc1:dece:0:0:1 
#  12 :1111001100010010:1010001100010010:0011010000000000:1101001100100001:abc1 :fff8 :0000 :00:0000:1:abc0:abc1:fff8:dece:ffff:abc1:dece:1:0:1 
#  12 :1111001100010010:1010001100010010:0011010000000000:1101001100100001:abc1 :fff8 :0000 :00:0000:1:abc0:abc1:fff8:dece:0000:abc1:dece:1:0:1 
#  13 :0110000000001111:1111001100010010:1010001100010010:0011010000000000:abc1 :fff8 :abc9 :c9:dece:0:0000:abc1:fff8:abc0:0000:abc1:dece:1:0:1 
#  15 :0000000000000000:0110000000001111:1111001100010010:1010001100010010:0000 :000f :5439 :39:dece:0:abc9:abc1:fff8:abc0:0000:abc1:dece:1:0:0 
#  16 :0010011100000001:0000000000000000:0110000000001111:1111001100010010:0000 :0000 :000f :0f:0000:0:5439:abc1:fff8:abc9:0000:abc1:dece:1:0:0 
#  17 :1010001100010010:0010011100000001:0000000000000000:0110000000001111:0000 :0001 :000f :0f:0000:0:000f:abc1:fff8:5439:0000:abc1:dece:1:0:0 
#  18 :1101001100010010:1010001100010010:0010011100000001:0000000000000000:abc1 :fff8 :0001 :01:0000:0:000f:abc1:fff8:5439:0000:abc1:dece:1:0:0 
#  19 :0001000000000000:1101001100010010:1010001100010010:0010011100000001:abc1 :fff8 :abc9 :c9:5439:0:abc1:abc1:fff8:5439:0000:abc1:dece:1:0:1 
#  19 :0001000000000000:0001000000000000:1101001100010010:1010001100010010:0000 :0000 :abc0 :c0:5439:0:abc9:abc1:fff8:5439:0000:abc1:dece:1:0:1 
#  19 :0001000000000000:0001000000000000:0001000000000000:1101001100010010:0000 :0000 :abc0 :c0:0000:0:abc0:abc1:fff8:abc9:0000:abc1:dece:1:0:1 
#  19 :0001000000000000:0001000000000000:0001000000000000:0001000000000000:0000 :0000 :abc0 :c0:0000:0:abc0:abc1:fff8:abc0:0000:abc1:dece:1:0:1 



 

Figure 27. Wave Simulation 

 

4.2 Board-level verification  

The 5-stage pipelined Processor functionality is verified by using simulation and FPGA prototyping. The 
FPGA prototyping can be done after the completion of a valid functional simulatio. The design of 5-stage 
pipelined processor is targeted for DE2i-150 Cyclone IV for FPGA implementation as shown in Figure 10. The 
arithemetic operations like addition, subtraction etc is observed using FPGA 7-segment results.  

The Pin Assignments where interred as shown in the following tables, in order, and then downloaded to the 
FPGA board (DE2i-150), and the board begin to work correctly according to our instructions.   

 

Figure 28. Connections between the slide switches and Cyclone IV GX FPGA 



Table 4. Pin Assignments for Slide Switches 

Node Name Direction Location I/O Standard 
enable Input PIN_H25 2.5V 
start Input PIN_C30 2.5V 
select_out[3] Input PIN_C2 2.5V 
select_out[2] Input PIN_V21 2.5V 
select_out[1] Input PIN_U30 2.5V 
select_out[0] Input PIN_V28 2.5V 

 

Figure 29. Connections between the push-button and Cyclone IV GX FPGA 

Table 5. Pin Assignments for Push-buttons 

Node Name Direction Location I/O Standard 
reset Input PIN_AA26 2.5V 
trap Input PIN_AE25 2.5V 



 

Figure 30. Connections between the LEDs and Cyclone IV GX FPGA 

Table 6. Pin Assignments for LEDs 

Node Name Direction Location I/O Standard 
out[15] Output PIN_L25 2.5V 
out[14] Output PIN_K24 2.5V 
out[13] Output PIN_M25 2.5V 
out[12] Output PIN_N21 2.5V 
out[11] Output PIN_N24 2.5V 
out[10] Output PIN_P21 2.5V 
out[9] Output PIN_R24 2.5V 
out[8] Output PIN_P25 2.5V 
out[7] Output PIN_T27 2.5V 
out[6] Output PIN_R24 2.5V 
out[5] Output PIN_T26 2.5V 
out[4] Output PIN_T21 2.5V 
out[3] Output PIN_W25 2.5V 
out[2] Output PIN_V27 2.5V 
out[1] Output PIN_T24 2.5V 
out[9] Output PIN_T23 2.5V 



 

Figure 31. Connections between the 7-segment display HEX0 and Cyclone IV GX FPGA 

Table 7. Pin Assignments for 7-segment Displays 

Node Name Direction Location I/O Standard 
seven_seg_out1[6] Output PIN_D4 2.5V 
seven_seg_out1[5] Output PIN_D5 2.5V 
seven_seg_out1[4] Output PIN_E3 2.5V 
seven_seg_out1[3] Output PIN_E4 2.5V 
seven_seg_out1[2] Output PIN_E6 2.5V 
seven_seg_out1[1] Output PIN_D7 2.5V 
seven_seg_out1[0] Output PIN_D10 2.5V 
seven_seg_out2[6] Output PIN_F10 2.5V 
seven_seg_out2[5] Output PIN_F4 2.5V 
seven_seg_out2[4] Output PIN_F6 2.5V 
seven_seg_out2[3] Output PIN_AG30 2.5V 
seven_seg_out2[2] Output PIN_F7 2.5V 
seven_seg_out2[1] Output PIN_G7 2.5V 
seven_seg_out2[0] Output PIN_G8 2.5V 
seven_seg_out3[6] Output PIN_G10 2.5V 
seven_seg_out3[5] Output PIN_J9 2.5V 
seven_seg_out3[4] Output PIN_G12 2.5V 
seven_seg_out3[3] Output PIN_F12 2.5V 
seven_seg_out3[2] Output PIN_G13 2.5V 
seven_seg_out3[1] Output PIN_B13 2.5V 
seven_seg_out3[0] Output PIN_G14 2.5V 
seven_seg_out4[6] Output PIN_F14 2.5V 
seven_seg_out4[5] Output PIN_D16 2.5V 
seven_seg_out4[4] Output PIN_F16 2.5V 
seven_seg_out4[3] Output PIN_F11 2.5V 
seven_seg_out4[2] Output PIN_G11 2.5V 
seven_seg_out4[1] Output PIN_E12 2.5V 
seven_seg_out4[0] Output PIN_E15 2.5V 



 

Figure 32. Block diagram of the clock distribution 

Table 8. Pin Assignments for Clock Inputs 

Node Name Direction Location I/O Standard 
clk Input PIN_AJ16 2.5V 

 

 

Figure 33. FPGA 7-segment results of 5-stages pipelined processor 



Chapter 5: Conclusion & Future Work 

The aim of this project is to design and simulate a 5-stage Pipelined processor design using Verilog 
HDL. The pipelined processor performing fixed point integer arithmetic, logical and data movement operation 
and branch instructions. Each instruction takes five clock cycles for its complete execution. The data hazard 
is encountered in the pipelined processor and it is eliminated by implementing data forwarding and load-
use module. The design is implemented for both single cycle and pipelining concepts. In this, we made our 
own instruction set and simulated the instructions where the instructions are successfully simulated using 
Cyclone IV FPGA.  

5.1 Achievements:  

• Pipeline is implemented in the processor design and fully working. 
• All the instructions which are implemented executes successfully. 
• The pipelined processor is able to execute fixed point instructions, branch instructions, and load/store 

instructions.  

In the future, the processor can be expanded with implementing more instructions to the instruction 
set according to our needs, like load/store multiple instructions, load/store byte reverse instructions, 
system linkage instructions, trap instructions, condition register logical instructions, integer load/store 
string instructions, branch conditional-count register, branch conditional-link register, TLB Management 
instructions, processor control instructions, cache management instructions, and synchronization 
instructions.  
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