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Abstract 
 

 

 
Convolution neural network (CNN) character recognition has revolutionized the field of optical 

character recognition (OCR) technology, making it more accurate and efficient than ever before. 

While the impact of CNN character recognition has been overwhelmingly positive, there are also 

some limitations and challenges that need to be addressed in order to fully realize its potential. 

The software implementation, using a traditional CPU-based approach, faced challenges such as 

slower processing speeds and limited parallelism, which hindered real-time character 

recognition. In contrast, the hardware implementation effectively addressed these issues by 

leveraging parallelism, allowing multiple computations to be executed simultaneously. 

This project explores the hardware  implementation of CNN on NIOS II soft-core  processor on 

FPGA. NIOS II and FPGA combination emerged as an optimal choice for this implementation 

due to their complementary strengths. This improvement is particularly impactful in applications 

requiring real-time image processing, such as autonomous driving systems, Digital Signal 

Processing (DSP) or live video surveillance, where reduced processing time can significantly 

enhance system responsiveness and efficiency. NIOS II processors offer flexibility and ease of 

integration, while FPGAs provide exceptional parallel processing capabilities, crucial for the 

efficient execution of CNNs. 

The research involved the development of both software and hardware implementations of a 

CNN model that achieved 97.89% accuracy. The software implementation utilized a traditional 

CPU-based approach, while the hardware implementation leveraged the parallel processing 

capabilities of FPGAs. Comparative analysis demonstrated a significant performance 

improvement, with the hardware implementation achieving a speedup factor of approximately 

115 times over the software counterpart. Additionally, the hardware design exhibited a power 

consumption of 137.42 mW, highlighting its efficiency. This project underscores the potential of 

FPGA-based accelerators in enhancing the efficiency of computationally intensive neural 

network tasks, offering insights into practical applications and future developments in the field of 

hardware-accelerated machine learning. 
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Introduction 

This chapter provides a comprehensive overview of the research, including the problem 

statement, available solutions, project objectives, and an outline of the report structure. It sets the 

stage by presenting relevant information, theories, and prior work that the project builds upon. 

The chapter explores the origins, features, and approaches utilized to successfully complete the 

project. It delves into current research and related works on CNNs, particularly their application 

on the NIOS II processor and FPGA platforms. CNN is a deep learning algorithm, that had 

revolutionized many scientific and technological fields by providing powerful methods for 

processing and analyzing visual and spatial data. CNN shows excellent performance in solving 

complex computer vision problems including image classification, recognition, segmentation, 

objects and face detection. An increasing interest in CNNs is becoming more and more 

noticeable in medical imaging, as they have shown significant potential in the detection and 

diagnosis of breast cancer. In addition to breast cancer, CNNs have shown significant potential in 

the detection and diagnosis of several other medical conditions, including lung cancer, brain 

tumors, skin cancer, diabetic retinopathy, Alzheimer's disease, and cardiovascular diseases. The 

applications of CNN are much wider, they are also used in Natural Language Processing (NLP), 

astronomy, autonomous systems such as self- driving cars, security and surveillance, and much 

more. 

However, the high performance of CNN algorithms comes with significant computational 

demands. These algorithms require a large number of parameters and involve extensive 

mathematical operations, which poses challenges for software implementation. CNNs require 

significant processing power and extensive memory to handle their large number of parameters 

and operations, which can be challenging on standard CPUs. Additionally, the scalability of 

CNNs on conventional CPUs is restricted due to their computational complexity, which requires 

massive parallel processing that CPUs are not optimized for. Additionally, limited memory 

bandwidth and parallelism capabilities in CPUs create bottlenecks during operations like 

convolution and pooling, leading to slower performance and increased resource usage. 

Optimizing CNNs for specific hardware restrictions can be complex, and the efficiency of the 

implementation is often dependent on the capabilities of underlying libraries and frameworks. In 

addition, while software implementations can utilize multi-threading, they may not fully take 

advantage of parallel processing as effectively as specialized hardware like Graphics Processing 

Units (GPUs) or Field-Programmable Gate Arrays (FPGAs). 

 

One approach for optimization is model simplification. Techniques like pooling, pruning, and 

variations of conventional CNN algorithms such as lightweight architectures, and quantization 

have been developed to enhance resource efficiency. On the other hand, there is a growing trend 

towards using high-performance hardware platforms. GPUs and FPGAs are particularly noted 

for their capability to handle large-scale parallel operations. While GPUs are widely used for 
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CNN tasks due to their high performance and ease of use, choosing a NIOS II processor 

combined with FPGA for CNN implementation can offer significant advantages over GPUs, 

particularly in specialized applications such as embedded systems, real-time processing, edge 

computing, and low-power devices. The NIOS II soft-core processor can be configured and 

optimized for specific tasks, allows for tailored control and management of the CNN operations 

running on the FPGA. This setup provides exceptional customizability, enabling precise 

optimization of both the hardware and software aspects of the CNN implementation. FPGAs 

offer highly parallel processing capabilities and can be customized to accelerate specific CNN 

functions, leading to higher speed and improved power consumption compared to GPUs. 

Additionally, the integration of NIOS II with FPGA supports real-time processing and 

predictable performance, which are critical for applications with strict timing requirements. The 

combination of NIOS II and FPGA can also result in cost-effective solutions for large-scale 

implementations, where power consumption and thermal management are essential 

considerations. This approach allows for an efficient solution that maximize the strengths of both 

the processor and the FPGA, making it a powerful alternative to traditional GPU-based 

implementations for specific CNN applications. 

FPGAs can be programmed to implement custom hardware accelerators tailored to the specific 

requirements of CNNs. Zhang proposed a high-performance FPGA-based accelerator for CNNs, 

demonstrating substantial improvements in speed and energy efficiency compared to CPU and 

GPU implementations [1]. Naveen Suda explored a hardware-software co-design approach for 

accelerating CNNs on FPGA-System on Chip (SoC) platforms, leveraging both FPGA fabric and 

NIOS II embedded processor to optimize performance [2]. Several studies have focused on 

implementing CNN-based handwritten character recognition systems on FPGA platforms with 

embedded processors. Jiang presented a handwritten digit recognition system using a CNN 

accelerator on an FPGA, controlled by a NIOS II processor. The system achieved real-time 

performance with high accuracy, demonstrating the feasibility of such implementations [3]. P. 

Wang implemented a binarized neural network (BNN) on FPGA for handwritten digit 

recognition. The BNN achieves 0.136 W power consumption and 18 μs image identification 

time. The accuracy rate is 85%, even without a batch normalization layer, the achieved accuracy 

is not as efficient as the one that was achived in this project [4].Jiang used HLS tools to deploy 

adaptable convolution and pooling IP cores on the ZYNQ7020 FPGA, achieving 74ms 

recognition time per digit and 98.89% accuracy at 100MHz. Siyu Zhu and Hu Huang implement 

a manual hardware-level CNN on an Intel Cyclone10 FPGA, achieving 0.0176 ms recognition 

time per digit and 97.57% accuracy at 150MHz. These works highlight the feasibility and 

efficiency of FPGA-based CNNs for real-time applications [5].Expanding on these 

advancements, several papers have specifically addressed CNN-based handwritten letter 

recognition on FPGA platforms. These studies typically focus on optimizing network 

architectures and implementation strategies to handle the broader and more complex problem of 

letter recognition compared to digit recognition. Ke Yu proposed a hardware optimization 

approach for OCR systems using Memory-Centric Computing and a “Memory-Tree” algorithm. 
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The algorithm was initially tested in C/C++ and OpenCV, then converted to RTL with Xilinx 

Vitis. The FPGA-based system recognized English capital letters and numbers in 34.24 µs and 

achieved a 77.87% reduction in power consumption compared to a traditional processor-based 

system [6]. De Oliveira developed a heterogeneous system for scene text character recognition, 

tested on the Terasic DE2i-150 platform, it achieved 65.5% accuracy and processed up to 11 

frames per second while using only 11% of the FPGA's logic elements. This system balances 

performance with resource efficiency for embedded applications [7]. Furthermore, several 

studies have explored the use of fixed-point and floating-point data representations to optimize 

CNN performance on FPGA platforms. Wang proposed an 8-bit low-precision floating-point 

(LPFP) quantization method for FPGA-based CNN acceleration, achieving negligible accuracy 

loss (within 0.5%) without re-training. Their implementation on Xilinx FPGAs significantly 

improved throughput and DSP utilization, particularly for VGG16 and YOLO, compared to 

existing accelerators [8]. In their work, Jiang proposed a hardware-friendly quantization scheme 

for CNNs using improved logarithmic quantization, achieving high accuracy with negligible loss 

and efficient resource utilization on FPGA. The implementation on Zynq XC7Z020 reached 

6.008W power consumption, demonstrating high resource efficiency [9]. Yanamala developed a 

16-bit fixed-point FPGA accelerator on the PYNQ-Z2 board, achieving 82.45% speed more than 

NVIDIA Tesla K80 GPU. The design, optimized with techniques like Singular Value 

Decomposition (SVD), array partitioning, and loop unrolling, showed significant speed 

improvements over CPU and GPU implementations for MNIST and Tumor dataset classification 

[10]. 

The achieve of this research: 

 Design CNN architecture for specific problem – handwritten characters (letters) 

recognition. 

 Implement the proposed CNN design in python, train it with Extended Modified National 

Institute of Standards and Technology (EMNIST) dataset. 

 Implement the CNN on FPGA-based NIOS II processor on DE2i-150 board to utilize the 

power of FPGA for high speed, parallel processing, high performance, energy efficiency, 

and reconfigurability for acceleration. 

 Analyze the resource usage of the FPGA solution and make a comparison in performance 

and efficiency among hardware, and software implementation. 

 

1.1  FPGA Platform 

FPGA is the abbreviation of Field programmable Gate Array. It is a type of integrated circuit that 

can be programmed post-manufacturing by the user. FPGAs are different from traditional 

processors in that they do not have a fixed architecture; instead, they have programmable logic 

blocks and reconfigurable interconnects that can be customized for specific tasks. The flexibility, 

low latency, and high energy efficiency are main advantages of FPGAs, which made them 
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perfect for tasks that need custom hardware features, high speed, and parallel processing 

abilities. 

Therefore, FPGA is widely used in producing highly customizable SoCs, ASIC verification, high 

performance computing etc. 

 

1.2 FPGA Resources 

Each resource plays a crucial role in enabling the FPGA to perform a wide range of functions, 

from basic logic operations to complex signal processing and communication tasks. The main 

resources are: 

 
Look-up Table (LUT) 

LUT works as a generator of functions. In the Cyclone IV GXarchitecture, 5-input LUTs are 

implemented. Wide multiplexers, along with other components like LUTs, flip flops, arithmetic, 

and carry chains, are combined to create a Logic Elelment (LE). LE serves as the primary tool 

for designing versatile combinatorial and sequential circuits on FPGA. 

 

Digital Signal Processor (DSP) 

FPGA-based DSP slices can execute a range of frequently utilized arithmetic functions. Using 

hardware parallelism with DSP can increase data throughput and efficiency for DSP 

applications. One DSP slice can be set up to carry out various arithmetic operations, such as 4-

input addition, multiplication, multiply-accumulation, etc. The input and output data width can 

also be adjusted. The DSP slice is designed for minimal power usage, fast performance, compact 

dimensions, and flexibility. 

 

Block Random Access Memory (BRAM) 

BRAM is the primary memory component found on FPGA devices. They are dispersed and 

mixed with other customizable components such as DSP and LUT on FPGA. BRAM benefits 

from the flexibility provided by close interaction with DSP and LUT. In Cyclone IV GX devices, 

the block RAM can hold a maximum of 16 Kbits of data. It could be arranged in different 

memory block configurations. It could be either RAM or ROM. It can have one port or it can 

have two ports. Also there is ability to define the port width and number of lines. 

 

FPGA architecture consist of thousand of LEs, known also as logic blocks, surrounded by a 

system of programmable interconnects, that routs signals between LEs. Input/output blocks 

interface between the FPGA and external devices. The FPGA architecture is shown in Figure 

1.1. 
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Figure 1.1 FPGA Architecture 

 

1.3  NIOS II Processor 

The NIOS processor, a soft processor core made by Intel (previously Altera), is intended for 

incorporation into FPGA designs. It can be personalized to fit specific application needs, making 

it a flexible option for embedded processing duties on an FPGA. NIOS II processor is based on 

the Harvard architecture, and incorporates many enhancements over the original NIOS 

architecture, making it more suitable for a wider range of embedded computing applications, 

from DSP to system-control. 

 

1.3.1 Key Features of NIOS II 

 Customizable Architecture 

The NIOS II processor have multiple core variants such as fast, standard, and economy, each 

offering different balances of performance and resource usage. Also an advantage of NIOS is 

the ability of add custom instructions, to accelerate application-specific tasks. 

 

 Scalability 

The processor supports multiple address and data widths, allowing it to be scaled according 

to application requirements. Also NIOS can interface with various types of memory, 

including on-chip RAM, external memory, and cache, ensuring flexible memory 

management. 
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 Integration 

As a soft processor, the NIOS core is implemented within the FPGA fabric, enabling tight 

integration with other FPGA resources. It also supports a wide array of customizable 

peripherals, like timers, UARTs, and GPIOs.  

 

1.4  Python in Machine Learning with Pytorch 

Python is widely used in machine learning because of its ease of use, readability, and wide range 

of libraries and frameworks available. It offers a strong environment for manipulating data, 

creating visualizations, and developing machine learning models. 

PyTorch was created by Facebook's AI Research lab as an open-source machine learning 

library. It offers a versatile and user-friendly system for deep learning, commonly utilized in 

research and production settings. PyTorch provides dynamic computation graphs, allowing for 

easier adjustments to the network behavior in real-time, as opposed to the static computation 

graphs found in TensorFlow. 

PyTorch simplifies the process of creating, training, and deploying CNNs. Its flexible 

computational graph and wide range of libraries allow novices and professionals alike to create 

advanced deep learning models. 

 

1.5 CNN 

A Convolutional Neural Network is a deep learning model that excels in image classification 

tasks. CNNs extract image features through convolutional operations and utilize these features to 

categorize objects. The network is designed to automatically and adaptively learn spatial 

hierarchies of features through training. When classifying an image, the network aggregates the 

learned features to determine and vote for the most likely class the image belongs to. 

Deep learning algorithms operate in two phases: training and inference. In the training phase, 

CNNs use a dataset of labeled images to learn, employing the backpropagation algorithm to 

update the network's parameters. Once the model is well-tuned and trained, it is used to classify 

new data samples, a process known as inference.  

During inference, the structure and parameters of the neural network remain fixed, and the model 

processes each new data sample. Consequently, optimizing the inference phase is a key focus, as 

it directly impacts the efficiency of classifying new inputs. 

 

 

This thesis is organized in the following structure: 

 Chapter 1 is an introduction that describes the problem. It introduces the structure of 

CNN. Include an introduction to FPGA and Nios II soft-core processor. It also include 

literature review, which also including researches of resource optimized CNN models. 
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 Chapter 2 describes the main tools utilized in this project for software development and 

hardware design. 

 Chapter 3 presents the proposed methodology, that covering the design and 

implementation of CNN system model, with the software and hardware implementation 

steps. 

 Chapter 4 is dedicated to presenting the results, and comparative analysis of the project. 

 Chapter 5 includes conclusion and future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8 
 

Experimental Background 

Developing and fine-tuning a CNN demands a strong experimental setup with specialized 

software tools for software development and hardware design. This chapter describes the main 

tools used in the project: Virtual Studio Code, ModelSim, Quartus Prime, and Eclipse, all of 

which were crucial at various points in the development process. 

 

2.1 Virtual Studio Code 

Visual Studio Code (VS Code) is a well-regarded open-source integrated development 

environment (IDE) created by Microsoft, known for its versatility, wide range of features, and 

compatibility with various programming languages. VS Code played a critical role in setting up 

and training the CNN in Python for this project. The streamlined coding process was enhanced 

by the IntelliSense and code auto completion features, and effective troubleshooting was made 

easier by the integrated debugging tools. The Git integration within the IDE facilitated seamless 

version control, aiding in collaboration and project management. Furthermore, the lightweight 

design and ability to work across different platforms of VS Code ensured a quick and efficient 

development process, allowing users to personalize the environment using numerous extensions. 

This makes it a crucial tool for handling the intricate tasks required in CNN development and 

training. 

 

2.2 ModelSim 

ModelSim is a popular simulation tool used for verifying digital logic designs, especially those 

created in hardware description languages such as VHDL, Verilog, and SystemVerilog. Created 

by Mentor Graphics, ModelSim is well-known for its robust capabilities that enable to test and 

troubleshoot hardware designs prior to being implemented on physical devices such as FPGAs or 

ASICs. ModelSim played a crucial role in the simulation of the hardware accelerator for this 

project, as it provided detailed waveform visualization that was essential for verifying the correct 

operation of the CNN design. By examining these waveforms, tracing signal behaviors and 

interactions within the accelerator was enable, allowing for early detection and resolution of 

potential issues before synthesis. This made ModelSim an indispensable tool in ensuring the 

functionality and reliability of the hardware implementation. 

 

2.3 Quartus Prime  

Quartus Prime is a comprehensive software suite developed by Intel (formerly Altera) for the 

design, synthesis, and implementation of digital circuits on FPGAs, and SoCs. It is widely 

recognized for its powerful toolset that supports the entire FPGA design flow, from initial 

concept to final hardware deployment. 
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2.3.1 Features of Quartus Prime 

 Design Entry and Synthesis: 

Quartus Prime offers multiple options for design entry, including schematic capture, 

hardware description languages like VHDL and Verilog, and block-based design. Once the 

design is captured, the software performs synthesis, converting the high-level code into a 

netlist that represents the logic gates and connections needed to implement the design on an 

FPGA. 

 

 Optimization and Resource Management 

The tool includes advanced optimization algorithms that focus on improving the performance 

and resource utilization of the design. Quartus Prime can optimize for various factors such as 

speed, power consumption, and area, helping to ensure that the design meets the specific 

constraints of the target FPGA. 

 

 Place-and-Route 

After synthesis, Quartus Prime performs place-and-route, where the synthesized netlist is 

mapped onto the physical resources of the FPGA. The tool determines the optimal placement 

of logic elements and routes the connections between them, taking into account timing 

constraints and the physical architecture of the FPGA. 

 Simulation and Verification 

Quartus Prime integrates with simulation tools like ModelSim to allow for the verification of 

designs before and after synthesis. This ensures that the final implementation behaves as 

expected when deployed on hardware. 

 

 Device Support and IP Integration 

Quartus Prime supports a wide range of Intel FPGA devices and includes an extensive library 

of pre-built Intellectual Property (IP) cores, which can be integrated into the design to add 

functionality without the need to develop it from scratch. These IP cores cover a variety of 

functions, including processors, memory controllers, and communication interfaces. 

 

2.3.2 Platform Designer 

Platform Designer, previously called Qsys, is a robust system integration tool in Intel's Quartus 

Prime software suite, aimed at making the creation of intricate FPGA-based systems easier. 

Designers can use a visually intuitive interface to link and set up different IP cores like 

processors, memory interfaces, and custom logic. Platform Designer streamlines numerous 

system integration tasks by automating the generation of interconnects, clock domain 

management, and maintaining data flow consistency across components. It further facilitates the 

development of personalized IP blocks and their smooth incorporation into current IP 

collections, allowing for adaptability and expandability in system planning. By simplifying the 
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integration process, Platform Designer speeds up development cycles, facilitating the design of 

complex embedded systems with numerous components and peripherals. The graphical user 

interface of Platform Designer is shown in Figure 2.1. 

 

 
Figure 2.1 Platform Designer GUI 

 

2.4 Eclipse Software 

Eclipse, widely utilized in embedded systems and Java programming, is an open-source 

integrated development environment (IDE) for software development. It offers a strong 

foundation with a diverse range of tools and plugins for various stages of project development, 

making it a flexible option for developers handling intricate projects. Eclipse played a crucial 

role in the project, particularly in conjunction with the NIOS II Embedded Design Suite. It 

provided a comprehensive platform for developing and debugging the C++ code that ran on the 

NIOS II processor, which managed the FPGA-based CNN accelerator. Additionally, its 

integration with version control systems allowed for effective project management and 

collaboration. 
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Methodology 

This chapter gives a thorough explanation of the methodology used in this project. This research 

work focuses on exploring how CNN can be successfully implemented on NIOS II processor 

with a hardware accelerator, and details the steps and tactics used to accomplish this objective. A 

CNN was designed and implemented in Python to train on the dataset. The weights and biases 

learned during training were then extracted and used to create a hardware accelerator, that was 

connected as custom IP to NIOS II processor. This method connects software-guided training 

with physical hardware, improving the CNN's effectiveness and productivity. 

 

 3.1 Preparing a dataset for model training 

The dataset selected for this project is the EMNIST [12] dataset specifically designed for letters. 

This dataset is famous for its thorough representation of all 26 letters of the English alphabet, 

with each letter corresponding to a distinct class from A to Z. Each class contains 2,400 samples, 

providing a diverse and strong representation of handwritten letter variations. A scope of 

EMNIST dataset is shown in Figure 3.1. Dataset includes pictures with white letters on a black 

background. This color combination creates a sharp contrast between the characters and the 

background, making it easier to differentiate them for neural networks training. The dataset was 

initially in CSV file format.   

 

 
Figure 3.1 EMNIST Dataset 

 

A MATLAB script was then employed to analyze the CSV file and extract every type of letters 

in a structured manner. Afterwards, the data that was retrieved was transformed into image form, 

with every image adjusted to a uniform size of 28×28 pixels. 
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3.2 Preprocessing of images for recognition 

Tools from OpenCV library were used to preprocess the image. The  cv2.imread() function was 

used for image loading in grayscale mode, converting it to a single-channel image instead of a 3-

channel RGB image. To resize the image into 28×28 pixel resolution the cv2.rezise()function 

was used. Then the pixel values, which were originally range from 0 to 255 (grayscale), where 0 

represents black, while 255 represents white, are normalized by dividing them by 255. This 

scales the pixel values to a range between 0.0 and 1.0, which is common in many image 

processing and machine learning tasks. After the preprocessing images were ready to feed the 

CNN for training and testing. 

 

3.3 CNN Layers 

A CNN is organized into layers. For a character recognition task, the network starts with an input 

layer that receives the image of character and ends with an output layer that provides values 

representing the probability of different classes. Between these layers, there are several hidden 

layers, including convolutional layers, activation functions, pooling layers, and fully connected 

layers, which process and transform the data. An example of this structure is shown in Figure 

3.2. 

 

 
Figure 3.2 Structure of CNN 

 

3.3.1 Convolution Layer 

The convolutional layer is primarily used for feature extraction in neural networks. It 

accomplishes this by initially applying a convolution function, followed by an activation 

function on the resulting output. Multiple convolutional layers are typically utilized to 

progressively extract and refine features from the input data. 
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A convolutional layer has M input channels and N output channels. Each input channel contains a 

feature map sized Wf ·Hf . The M ·Wf ·Hf input convolves with a convolution kernel sized M · Wk 

· Hk and produces a Wf · Hf output feature map in one of the output channels. Figure 3.3 shows a 

convolution with a single kernel. Convolution kernels contains trained weights of the neural 

network. Convolution with N such kernels produces an output sized N · Wf · Hf . 

 

 
Figure 3.3 Structure of Convolutional Layer 

 

Wf is the feature map width, and Hf is the feature map height. Wk is the kernel width, and Hk is 

the kernel height. For each pixel in input C and output G, the expression is shown in Equation 

3.1, where K represents the convolution kernel. 

 

𝐺 𝑛, 𝑥, 𝑦 =    

𝐻𝑘
2

𝑗=−
𝐻𝑘

2

𝑊𝑘
2

𝑖=−
𝑊𝑘

2

  

𝑀−1

𝑚=0

= 𝐶 𝑚, 𝑥 +  𝑖, 𝑦 +  𝑗 ·  𝐾 𝑛, 𝑖, 𝑗                     (3.1) 

 

3.3.2 Padding 

The size of output feature maps will shrink due to convolution. Padding is a technique used to 

control the spatial dimensions of the output feature maps. When applying a convolution 

operation, the filter or kernel slides over the input data, and padding helps manage the size of the 

resulting feature map. 

In convolution there are mainly two types of padding: valid padding and same padding. Valid 

padding, also known as no padding, involves applying the convolution operation without adding 

any extra pixels to the input. This results in a smaller output feature map compared to the input, 

as the convolution filter is only applied where it fully overlaps with the input data. On the other 

hand, same padding, also known as zero padding, involves adding extra pixels (usually zeros) 

around the input's border. This approach ensures that the output feature map retains the same 

spatial dimensions as the input, allowing the convolution operation to cover the entire input, 
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including its edges. Figure 3.4 shows how different types of padding affect the size of the output 

future maps. 

 

 
Figure 3.4 Convolution with and without zero padding 

3.3.3 Stride 

Stride determines the number of steps the convolution kernel moves during the convolution 

process and also defines the factor by which the output is downscaled. Figure 3.5 illustrates a 2D 

convolution using a 2 by 2 convolution kernel with a stride of 1, and 2.  

 

 
Figure 3.5 Convolution with different strides 
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To determine the spatial dimensions of the output feature maps from a given input size Win×Hin , 

kernel size Wk×Hk , stride S, and padding P, the output size Wout×Houtcan be calculated as shown 

in Equation 3.2. 

𝑊𝑜𝑢𝑡 =  
𝑊𝑖𝑛 − 𝑊𝑘 + 2𝑃

𝑆
 + 1    ,    𝐻𝑜𝑢𝑡 =  

𝐻𝑖𝑛 − 𝐻𝑘 + 2𝑃

𝑆
 + 1             (3.2) 

 

3.3.4 Activation Function 

An activation function is applied to the feature map and the result is forwarded to the next layer 

as input. This function introduces nonlinearity to the network, allowing it to learn more complex 

patterns and high-order polynomials. By incorporating nonlinearity, the activation function 

enhances the network's ability to handle complicated tasks and improve its overall learning 

capability. Most common activation function is Rectified Liner Units (ReLU), shown in the 

Equation 3.3. 

                             𝑅𝑒𝐿𝑈 𝑥 =  
𝑥,         𝑥 > 0
0, 𝑥 ≤ 0

                                                                   (3.3) 

 

3.3.5 Pooling Layer 

Pooling layer segment the input data into smaller regions, known as pooling windows or 

receptive fields, and apply an aggregation operation within each region, such as taking the 

maximum or average value. This process reduces the spatial dimensions of the feature maps, 

resulting in a more compact and condensed representation of the input data. By decreasing the 

size of the feature maps, pooling layers help to simplify the data and lower computational 

demands, while maintaining the essential features for further analysis. 

The difference between max-pooling and average-pooling layers output is shown in Figure 3.6. 

 

 
Figure 3.6 Max pooling vs. Average pooling 
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For pooling layer with stride of 2 the output future map is reduced into 
1

4
 of the input size as 

result. 

 

3.3.6 Fully Connected Layer 

In a fully connected layer, the feature map from the previous layer is transformed into a linear 

structure. Each element of this feature map functions as a neuron, and every neuron is fully 

connected to all neurons in the subsequent layer. In a fully connected layer with M input neurons 

and N output neurons, and for each neuron in input X and output Y, the expression is shown in 

Equation 3.4, where W represents the weight of each connection, and B represents the bias of 

each output neuron. 

 

                                                  𝑌 𝑛 =  𝑋[𝑚]

𝑀−1

𝑚=0

. 𝑊 𝑚, 𝑛 + 𝐵 𝑛                                               (3.4) 

 

In a CNN, there can be multiple fully connected layers, each typically followed by a ReLU 

activation function.  

However, the final fully connected layer usually employs a softmax activation function to output 

a probability distribution over the possible classes. The softmax function converts the raw output 

scores from the network into probabilities, which sum to one, making it ideal for multi-class 

classification problems. 

For an input vector z, the softmax function is defined as in Equation 3.5. In the equation K is the 

number of classes, zi is the input score for class I, and e is the base of the natural logarithm. 

                                              𝜎 𝑧𝑖 =  
𝑒𝑧𝑖

 𝑒𝑧𝑗𝐾
𝑗=1

    𝑓𝑜𝑟 𝑖 = 1,2, …… , 𝐾                                           (3.5) 

 

 

3.4 CNN Design  

In this research, different CNN structures were investigated to find the best model for letter 

recognition. Various configurations were tested, such as adjusting the number of layers, filter 

sizes, number of channels, and types of activation functions. For the convolution layer ReLU 

was selected as the activation function because of its simplicity and computational efficiency, 

which are essential for handling large datasets. In contrast to functions such as Sigmoid or Tanh, 

ReLU assists in addressing the issue of vanishing gradient, allowing for quicker and more 

efficient learning in deep neural networks. The network's capacity to generate sparse activations 

enhances generalization, and its nonlinearity enables capturing intricate patterns in character 

shapes. As the pooling layer the max pooling was selected instead of average pooling because it 
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helps maintain essential features like edges and corners, which are important for character 

differentiation. Max pooling keeps strong features by choosing the highest value in each 

window, improving recognition accuracy, while average pooling may weaken these important 

details. Initially, structures with fewer layers were tried, followed by deeper networks to evaluate 

their impact on performance. Tests showed that while deeper networks could achieve higher 

accuracy, they had tendency to over fit. Less complex models, however, failed to achieve 

satisfactory accuracy. The architectures that was tested are shown in Figure 3.7. After various 

rounds of testing, the design that demonstrated the most ideal balance between generalization 

and performance included 8 layers. This setup consistently delivered better outcomes in 

important evaluation measures like accuracy, precision, and loss.  

 

 

 
Figure 3.7 CNN tested architectures 

A crucial tool for model optimization was TensorBoard, which provided visualizations of 

accuracy and loss graphs across all architectures, enabling effective performance tracking and 

comparison. TensorBoard was used to choose the most fitting architecture because it allowed for 

real-time monitoring of accuracy, validation accuracy, and loss on a single graph. This 
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comprehensive view helped identify the best-performing models, detect overfitting early, and 

guide hyperparameter tuning, ensuring optimal model performance and effective architecture 

selection. Figure 3.8 presents graphs for multiple trained architectures, accuracy, loss, validation 

accuracy, and validation loss, allowing for a comparative analysis of their performance. 

 
Figure 3.8 Different Architecture Graphs 

 

As a result of this tests, valid padding (no padding) was selected for the convolutional layer, 

resulting in the filter being applied only where it completely overlapped with the input data. 

Therefore, the resultant feature map is reduced in size compared to the input as no extra pixels 

are included along the edges to preserve the original dimensions. Additionally, a stride of 1 was 

selected, meaning the filter moves one pixel at a time across the input, ensuring detailed feature 

extraction while still contributing to the reduced output size. In first convolution layer the kernel 

size was set to 5×5, in two other layers kernel size was  reduced to 3×3. Max pooling was chosen 

with a stride of 2. This implies that during the pooling operation, the maximum value was chosen 

within every 2×2 section of the input, and the filter shifted by two pixels at a time.The 

architecture of CNN that was chosen is presented in Figure 3.9 
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Figure 3.9 CNN Architecture 

 

3.5 Training Process of the CNN 

The image data is presented to the network and passed through the network layers. The first step 

in a CNN is to detect and investigate the unique features and structures of the objects to be 

differentiated. Filter matrices are used for this. Once a neural network has been modeled, these 

filter matrices are initially still undetermined and the network at this stage is still unable to detect 

patterns and objects. The networks are trained once during development and testing. After that, 

they are ready for use and the parameters no longer need to be adjusted. 

Backward propagation is an algorithm used in CNN straining. It is responsible for updating the 

network‟s weights and biases in order to minimize the error in predictions.  

First step in CNN training is forward propagation, which starts with image applied into the 

network, then the layers computation is execute in sequential way in the same manner that was 

explained in the section of the report, then the output is generated by the output layer, which is 

typically a vector of logits representing class scores for classification tasks. 

After that the loss is calculated by the loss function, which measures the difference between the 

predicted output and the true labels. Loss functions for classification tasks include cross-entropy 

loss, the expression is shown in Equation 3.5, theyi is the true label, and 𝑦𝑖  is the predicted 

probability for class i. 

 

                                           𝐿𝑜𝑠𝑠 =  − 𝑦𝑖

𝑖

log 𝑦𝑖                                                                      (3.5) 

 

The next step is the backward propagation, that goal is to compute the gradient of the loss with 

respect to each parameter in the network. This is achieved using the chain rule of calculus to 



 

20 
 

propagate the error backward through the network. As the name indicate it is propagating the 

error backward from the output layer to the input layer. 

 

At output layerthe gradient of the loss is computed with respect to the input to the softmax layer 

which is implemented in Equation 3.6. For 𝛿(𝐿) being the error at the output layer, 𝑦  the 

predicted output, and y the true label. 

                                                                      𝛿(𝐿) =  𝑦 − 𝑦                                                                        (3.6) 

 

For the fully connected layer, gradients of the weights and biases are computed. The operations 

are represented mathematically in Equations  3.7-3.9. 

 

                                                      ∇𝑊(𝑙) =  𝛿(𝑙+1). (𝑎 𝑙 )𝑇                                                                      (3.7) 

 

                                                      ∇𝑏(𝑙) =  𝛿(𝑙+1)                                                                                     (3.8) 
 

                                                      𝛿(𝑙) =  (𝑊(𝑙+1))𝑇 .𝛿(𝑙+1) ∙ 𝑓 ′ 𝑧𝑙                                                    (3.9) 

 

where ∇W(l) and ∇b(l) are the gradients of weights and biases, δ(l)is the error term for layer l, a(l) is 

the activation from the previous layer, W(l+1) are the weights of the next layer, and f′(z
(l)

) is the 

derivative of the activation function applied to the pre-activation z
(l)

. 

 

Pooling layers transmit error signals by distributing the gradient to the max value locations (in 

max pooling) or equally (in average pooling) due to their lack of weights. 

For convolutional layers, compute the gradient is done with respect to the filters, as shown in 

Equation 3.10, and 3.11. 

 

                                                  ∇𝑊𝑐𝑜𝑛𝑣
(𝑙)

=  𝛿𝑐𝑜𝑛𝑣
(𝑙+1)

∗  𝑎𝑐𝑜𝑛𝑣
(𝑙)

                                                                (3.10) 

 

                                                  𝛿𝑐𝑜𝑛𝑣
(𝑙)

=  𝛿𝑐𝑜𝑛𝑣
 𝑙+1 ∗ 𝑊𝑐𝑜𝑛𝑣

 𝑙+1  ∙ 𝑓 ′ 𝑧𝑐𝑜𝑛𝑣
 𝑙                                          (3.11) 

 

where ∗ denotes the convolution operation, δ
(l)

 is the error term for the convolutional layer, a
(l)

 is 

the activation map from the previous layer, and f′(z
(l)

) is the derivative of the activation function 

applied to the convolutional layer's pre-activation map. 

 
After calculating the gradients in the backpropagation process, the following step in training a 

CNN is adjusting the network's parameters (weights and biases) to reduce the loss function. This 

is accomplished using optimization algorithms. Two widely used optimization algorithms are 

Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation (Adam). The computation 

of gradiens for weights and bias is shown in Equation 2.8, and 2.9. 

 

                                                             𝑊 ∶=  𝑊 − 𝜂. 𝛻𝑊                                                                 (2.8) 
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                                                             𝑏 ∶= 𝑏 −  𝜂. ∇𝑏                                                                       (2.9) 

 

where η is the learning rate. 

The optimization algorithm that was used in the project for CNN training is Adam optimizer. It 

is an advanced optimization algorithm that combines the benefits of two other extensions of 

SGD: AdaGrad and RMSProp. It computes adaptive learning rates for each parameter. Adam is 

characterized by its adaptive learning rates and bias correction. It adjusts the learning rates for 

each parameter based on the estimates of the first and second moments of the gradients, making 

it particularly well-suited for problems with sparse gradients. Additionally, the bias correction 

terms ensure that the estimates 𝑚 𝑡  and 𝑣 𝑡are unbiased, which is especially beneficial during the 

initial steps of training. This combination allows Adam to provide faster and more stable 

convergence compared to other optimization algorithms. 

Mini-batch training and epochs are important ideas that enhance the efficiency and effectiveness 

of training neural networks. During mini-batch training, both the forward and backward 

propagation tasks are carried out for every mini-batch of data, resulting in quicker and more 

frequent adjustments to the model's parameters compared to analyzing the entire dataset 

simultaneously. This approach offers a trade-off between the computational speed of handling 

numerous samples simultaneously and the strength of incorporating some diversity in the 

training process, akin to stochastic training. Epochs are defined as the act of feeding the 

complete training dataset into the network repeatedly. This step-by-step method guarantees that 

the model gets multiple chances to adjust its weights and biases, gradually enhancing its 

performance. Epochs contribute to the network's understanding of the training data by aiding in a 

deeper grasp of patterns and features, resulting in a more precise and dependable model. 

3.6 Software Implementation of CNN 

The CNN was implemented in Python using the PyTorch library. A CharacterDataset class was 

defined to initialize the dataset by reading image paths from the root directory, storing them, and 

assigning labels to each class (corresponding to each folder). Each image from the dataset and its 

corresponding label was retrieved by index, after which the images were loaded and 

preprocessed. The dataset was then split into training and testing sets, with 80% of the data 

allocated for training and 20% for testing. A DataLoaders were created for both the training and 

testing sets, batching images in groups of 600 and shuffling the training data. Shuffling the data 

is a beneficial technique in CNN training because if the data is fed into the network class by 

class, the network is more likely to memorize the data rather than learn the underlying 

patterns.CNN class was defined, that consist of three convolutional layers, subsequent ReLU 

activations, and max-pooling layers. The first layer has 3 output channels, the second has 9, and 

the third has 18. Following the convolutional layers, the output is flattened and processed 
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through three fully connected layers, decreasing the data to 100 units, then to 60 units, and 

ultimately generating an output of 26 units, representing the 26 character classes. The 

implementation of CNN in Python is shown in Figure 2.10.  

 
Figure 3.10 CNN Implementation in Python 

The model is then initialized and displayed in the terminal using the model.summary() function, 

which provides a detailed overview of the model‟s architecture, including the layers, output 

shapes, and the number of trainable parameters in each layer. The overview of the model as 

generated by the Python is shown in Figure 3.11. 

 

Figure 3.11 Model Summary in Python 
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The loss function was defined as CrossEntropyLoss, and the Adam optimizer was used for 

training with a learning rate of 0.001. The training process runs for 100 epochs, during which the 

model iterates over the training dataset, performing forward and backward passes to optimize the 

model parameters. After each epoch, the loss and accuracy were calculated. The test function 

evaluates the trained model on the test dataset, and when the desired accuracy was achieved, the 

final trained model was saved to a file. The code also stored the model's parameters, which 

consist of the weights and biases for each layer, in text files. These weights and biases are 

essential for determining the behavior of the convolutional and fully connected layers, within the 

network, the pooling layers do not have any parameters. During training, the network adjusts 

weights to decrease loss, and biases help move the activation function to better fit the data. These 

stored parameters were next utilized in FPGA implementation of CNN. 

 

3.7 Hardware Implementation of CNN 

NIOS II processor combined with a hardware accelerator was selected to execute the CNN in 

hardware. This combination enables the CNN to run efficiently by transferring the 

computationally heavy duties to the accelerator, with the NIOS processor managing control and 

coordination. This arrangement combines the advantages of the processor and FPGA, allowing 

for strong performance of CNN in hardware. Figure 3.12 provides comprehensive visual 

representation of the architecture and components that forms the system. 

 

 
Figure 3.12 System Model Overview 
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3.7.1 Pixel Conversion to Fixed-Point Format 

In the hardware implementation, pixel values were changed to a specified fixed-point format, 

Q8.24, to improve computational efficiency and accuracy in processing. Each pixel value was 

represented in the Q8.24 format as a 32-bit number, with 8 bits dedicated to the integer number 

part with the most significant bit for sign, and 24 bits dedicated to the fraction part. This 

transformation enables accurate mathematical calculations on the pixel values without increasing 

memory usage. By utilizing this structure, speedy and precise processing of pixel data was 

guaranteed, particularly in settings where floating-point calculations are expensive or not 

possible. The conversion of the pixels from floating to fixed point format is known as 

quantization. 

Also the parameters extracted from trained model (weights and biases) were converted into 

fixed-point format, the conversion ensured that the parameters, initially in floating-point format, 

could be accurately represented in the memory of the FPGA-based accelerator. The conversion 

was done by Python script, the converted biases of first convolutional layer are represented in 

Figure 3.13, from the architecture of CNN is clear that first layer have only 3 biases because it 

has 3 output channels. 

 
Figure 3.13 Quantization of CNN Biases 

 

The algorithm used for Quantization was 

1. Number scaling to fixed point representation, by multiply the floating point number by 

2
F
, where F is the fractional length of the variable, in the design is 24. 

2. Round the scaled value to the nearest integer to handle any fractional part. 

3. Clamp the rounded value to fixed-point range (32-bit). 

 

3.7.2 Modules of Hardware Accelerator 

Separate module was created in SystemVerilog Hardware Description Language ( HDL) for each 

layer of the neural network for the CNN accelerator. This modular design method made it easier 

to handle the intricate calculations needed for convolution, pooling, and fully connected layers. 
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The modular representation improved the design and implementation process, making debugging 

and optimization of each layer easier. All individual models were connected by top-level 

module, which managed the overall execution sequence, ensuring that data transitioned smoothly 

from one layer to the next, and synchronized operations to maintain the integrity of the 

computation. The top module have several inputs from the NIOS II processor and outputs that 

are send to the processor, the block diagram of top module is represented in Figure 3.14. 

 

 
Figure 3.14 Block Diagram of Top Module 

In the implemented design, each convolutional layer is connected to two Read-Only Memory 

(ROM) modules: one storing the weights and the other storing the biases. Each ROM is 

implemented as a lookup table where the memory array serves as the table, and the address input 

is used to select which data value to output. The only exception to this setup is the pooling 

layers, which do not require any weights or biases. Additionally, the design includes three 

Random Access Memory (RAM) modules. One RAM module is dedicated to storing the input 

image pixels received from the NIOS processor, which consists of 784 pixels. The other two 

RAM modules are reused throughout the network to store the output from each layer temporarily 

before passing it on to the next layer. After the image data is processed through the network, the 

final output prediction is generated. This prediction, represented as a number, is then sent back to 

the NIOS processor for further use.  

State machine is crucial in the design, for managing the flow of data and ensuring that the entire 

neural network operates synchronously and efficiently. It guarantees that each step is executed in 

the correct sequence, preventing any data collisions or mismanagement of resources. The state 

machine that was implemented in the CNN_Top module is shown in Figure 3.15.  
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Figure 3.15 CNN_Top Module State Machine 

 

3.7.2.1 Convolution Module 

The convolution_layer modules for all three convolutional layers were implemented in a very 

similar manner, with the main differences being the size and number of filters, as well as the 

number of input and output channels. Each module features a state machine that manages the 

loading of input data, weights, and biases from the memory modules. Additionally, the modules 

perform the fixed-point multiplication and addition operations required for the convolution 

process,each module also incorporates a ReLU activation function to introduce non-linearity into 

the model. 

The operation of each convolution_layer module is controlled by a state machine that follows a 

precise sequence: 

 The module begins processing only when it receives a start signal. 

 During processing, the convolution results are passed through the ReLU activation 

function, ensuring that only positive values are propagated forward. 

 After completing the computations, the module sends the processed output data to the 

memory unit. 

 Once all outputs have been sent, the module then issues a finish signal to indicate that all 

operations are complete. 
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This sequence ensures that the convolutional layers operate efficiently, with outputs being 

properly stored after applying the ReLU function and before the completion of each process. The 

state machine that control this flow is illustrated in Figure 3.16. 

Figure 3.16 State Machine of Convolutional Layer Module 

 

Where count_b tracks the number of channels being processed, count_s counts the number of 

output pixels generated, count_w counts the number of weights within the kernel, and count_ d 

tracks the range of input data being used for multiplication with the kernel. 

Module kernel_mult  is responsible for multiplication and addition of the kernel and input feature 

map, and also for the application of ReLU activation function.  

In the implemented design, the input image is processed by dividing it into smaller overlapping 

regions, also known as frames, Each of these frames is then multiplied with the convolutional 

kernel to produce a feature map. The input image is divided into frames using a sliding window 

technique. This window moves across the image in small steps, equal to the stride length, 

ensuring that each frame overlaps with its neighboring frames. The size of the window matches 

the dimensions of the kernel. 

 

3.7.2.2 Pooling Module 

The pooling module is designed to reduce the spatial dimensions of the input while maintaining 

the most important features. The module takes input data and processes it in 2×2 blocks, where 

the maximum value of the four pixels is selected. The module's internal state machine manages 

the flow of data through several states, including loading the input data, performing the max 

pooling operation, and storing the resulting pooled value into memory. The state machine also 
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handles the address calculations for both input and output data locations. The module operates in 

batches, iterating through each step and batch until all the data is processed, after that it 

indicating the end of the task by making the ready signal active high. 

 

 

3.7.2.3 Fully Connected Module 

The design of hardware accelerator contain 3 fully connected modules, the first two implement 

identical algorithm, the only difference between them is the number of input data and neurons 

(output data). They are designed to implement a fully connected layer in a neural network, where 

each neuron in the layer is connected to all neurons in the previous layer. This module processes 

input data by multiplying it with corresponding weights and then accumulating the results for 

each neuron. The computation includes adding a bias term and applying a ReLU activation 

function to ensure non-linearity. The state machine controls the sequence of operations, 

including loading data, weights, and biases, performing multiplication, accumulation, and 

applying ReLU, which is very similar to the convolution module. The module outputs the final 

computed value for each neuron and store it in memory. 

Last fully connect module differs from the previous in several key ways, reflecting its role as the 

final output layer of the CNN. This module does not include a ReLU activation function, as it 

directly produces the final output values that will be used for prediction. The accumulator sums 

the products of input data and weights across all connections for each neuron, with the bias 

added before the final result is stored. Once the computations for all neurons are complete, the 

output values are stored in memory, and the module signals that the CNN processing is finished. 

This streamlined design is optimized for output generation, focusing on accurately producing the 

final prediction results. 

 

3.7.2.4 Max_Value Module 

The Max_Value module is designed to identify the index of the maximum value within a set of 

26 values, which is are the output values from last fully connected layer. The module 

sequentially compares each input value to the current maximum value stored in the temp register. 

The state machine controls the flow of operations through several states: it starts in the IDLE 

state, then proceeds to CHECK_STEP, where it checks if all values have been compared. In the 

COMPARE state, it updates the temp register and the max index if the current value is greater 

than the stored maximum. The state machine is shown in Figure 3.17.  
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Figure 3.17 State Machine of Max_Value Module 

 

Once all values have been processed, the module moves to the DONE state, at which point the 

done signal is asserted, and the index of the maximum valueis output. This module is crucial for 

determining the final prediction in a classification task, where the index of the highest value 

corresponds to the predicted letter class. 

 

3.7.2.5 Interface Module 

All the modules been packaged as custom IP core to create a hardware accelerator. Additionally, 

a top-level module has been implemented to interface between the hardware accelerator and the 

NIOS II processor, managing the communication and data exchange between them. This top-

level module, which includes registers for data, address, write enable, and start signals, allows 

the processor to send input data to the CNN, control the computation process, and retrieve the 

final results. Specifically, the module includes logic for handling read and write operations from 

the NIOS II processor, using the processor‟s address, read, and write signals to control the flow 

of data. The CNN computation is initiated by the start signal, and upon completion, the output 

prediction (inference) and a done signal are sent back to the processor. Data transaction between 

processor(master) and accelerator(slave) adopts Advanced eXtensible Interface (AXI) protocol 

[13]. AXI protocol ensures high speed data transformation from point to point. Figure 3.18 

shows the interface between NIOS and custom IP. 
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Figure 3.18 Interface between NIOS II and Accelerator 

 

This design ensures efficient and accurate execution of CNN operations, leveraging the 

processing power of the custom IP cores while maintaining easy control via the NIOS II 

processor. 

 

Custom IP core  

IP core is a specialized digital design block created to carry out specific tasks in an FPGA or an 

ASIC. Custom IP cores are specially designed to fit the specific needs of a particular project or 

application, as opposed to standard IP cores that are readily available for general purposes. These 

cores are configurable to execute a variety of tasks. Developing a customized IP core consists of 

defining its functionality, coding it in hardware description languages such as Verilog or VHDL, 

and integrating it into the larger system with tools like Intel's Platform Designer. Tailored IP 

cores allow for optimized, hardware solutions designed for specific applications, providing the 

ability to boost performance, lower energy usage, and fully utilize the potential of the FPGA or 

ASIC they are integrated into. 

 

3.7.3 Integration of CNN Accelerator with NIOS II Processor 

After completing the design and packaging of the CNN hardware accelerator as a custom IP 

core, Platform Designer in the Quartus Prime software was utilized to incorporate this IP into a 

complete system[14]. The custom accelerator was included with important elements like the 

NIOS II processor, internal clock, UART for serial communication, a timer, on-chip RAM 

memory, LCD controller, and performance counter. This fusion developed a fully operational 

system that efficiently employs the hardware accelerator for performing high-performance CNN 

computations under the supervision of the NIOS II processor. The architecture of NIOS II 

processor is represented in Figure 3.19 [11]. 
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Figure 3.19 NIOS II Processor Architecture 

 

 

Utilizing Platform Designer made it easy to connect and configure components, guaranteeing 

smooth data flow and system control. Figure 3.20 shows complete system with all connections, 

base address for each IP, and the interrupts.  
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Figure 3.20 View of the System in Platform Designer 

 

One of the key advantages of using Platform Designer is its ability to allow users to customize 

on-chip RAM to meet specific project requirements. In this project, the flexibility of Platform 

Designer enabled the configuration of on-chip RAM tailored to the needs of the CNN 

accelerator. The RAM size was customized to 40KB, ensuring sufficient memory for efficient 

data storage and processing while optimizing resource usage within the FPGA. This level of 
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customization is crucial for achieving a balanced design that meets both performance and 

resource constraints. 

Once the system design is successfully completed, the next important task is to perform the pin 

assignment for the FPGA. This stage is essential to ensure proper and effective interaction 

among hardware components after downloading the system into FPGA. The pins are assigned 

due to the board manual [15]. 

After the design is downloaded into FPGA, the subsequent task involves coding the NIOS 

processor using C++ language. This programming is essential for managing all connected 

peripherals to the FPGA. The software guarantees that the FPGA and its accompanying 

components cooperate seamlessly to achieve the desired goals. 

The main functions of the NIOS II processor are to initializes the LCD, processes an image, 

sends it to the CNN accelerator, waits for inference to complete, and displays the result on the 

LCD. The program starts by initializing the LCD through a series of commands to set its mode 

and ensure it's ready for operation. It then preprocesses an image by normalizing pixel values 

and quantize them, which is required for the CNN accelerator. After resetting the CNN 

accelerator to ensure it‟s in a known state, the program sends the image data to the accelerator. It 

then starts the CNN processing and waits for the processing to complete by polling a status 

register. Once the CNN has finished, it reads the inference result, converts it to a character, and 

displays the result on the LCD. Additionally, performance counters are used to measure the 

execution time of the CNN processing.  

 

This chapter described a multi-stage approach to implementing and deploying a CNN using both 

software and hardware components. Initially, the CNN was designed and trained in Python using 

PyTorch framework. During training, the network learns from labeled data, adjusting its weights 

and biases to optimize performance. This trained model was then tested on a handwritten letters 

to evaluate its accuracy and generalization capabilities. Following this, the chapter transitions to 

hardware implementation. The trained CNN's weights and biases were integrated into a hardware 

design that includes a NIOS II processor and a custom FPGA-based CNN accelerator. The NIOS 

processor is programmed to manage data transfer between the accelerator and system 

components, while the accelerator performs CNN computations efficiently in hardware. By 

combining Python-based model training with FPGA hardware acceleration, this approach 

achieves a balance of flexibility, ease of development, and high-performance real-time inference. 
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Results and Discussion 

This chapter demonstrate and examine the results of executing and utilizing the CNN on 

software and hardware platforms. The results and discussion are organized to offer a complete 

summary of the system's performance, encompassing the CNN model trained in Python, its 

hardware acceleration on the FPGA, and its integration with the NIOS processor. It starts by 

discussing the CNN's performance metrics and accuracy as assessed during testing, then evaluate 

the operational efficiency of the hardware accelerator. The conversation will focus on important 

discoveries, comparing software-based and hardware-accelerated implementations, and 

investigating the impact of these results on practical applications.  

 

4.1Python Implementation and Results 

The designed CNN was implemented in Python using the Visual Studio Code platform. After 

normalizing the dataset and splitting it into training and testing sets, the model was trained and 

evaluated. The highest level of accuracy was reached by making several changes to the CNN 

structure and adjusting different training parameters, such as the number of epochs, type of 

optimizer, and learning rate. Making iterative changes was crucial to improve the model's 

performance and reach maximum accuracy. Figure 4.1 show the accuracy that was achieved for 

training with Adam analyzer, with 100 epochs, and learning rate equal to 0.001. 

 

 

Figure 4.1 CNN Accuracy during training 

 

Table 4.1 show the finale results of CNN training after 100 epochs. The closeness of accuracy on 

the training data and the validation data suggests that the model is not overfitting to the training 

set. It indicate that it is likely to perform well on truly unseen data. Also the small training loss 

means that the model is effectively learning from the training data and making accurate 

predictions on it. Small validation loss means that the model is also performing well on data it 

hasn‟t seen during training. 
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Table 4.1 Results of CNN training 

Accuracy 97.89% 

Validation Accuracy 96.83% 

Loss 0.0477 

Validation Loss 0.0587 

 

 

4.1.1Tensorflow and Keras Libraries 

TensorFlow is an open-source machine learning framework developed by Google. It provides a 

comprehensive ecosystem for building and deploying machine learning models, particularly deep 

learning models. TensorFlow supports a variety of neural network architectures and algorithms, 

making it versatile for tasks such as image recognition, natural language processing, and more. It 

offers flexibility and scalability, with capabilities for both research and production environments. 

Keras is a high-level neural networks Application Programming Interface (API) that runs on top 

of TensorFlow. It provides an intuitive and user-friendly interface for defining neural network 

architectures, training models, and evaluating performance. 

TensorFlow and Keras were used to enhance the model evaluation and visualization processes, 

by create the confusion matrices, and graphs including loss curves and accuracy plots. The crated 

confusion matrices is shown in Figure 4.2.  

 

 
Figure 4.2 Confusion Matrices  
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Confusion matrices were instrumental in identifying areas where the model was making errors 

and guiding improvements. The confusion matrix for the final design, shown in Figure 3.2, 

revealed that the letter "D" was most frequently confused with the letter "O." Despite this, "D" 

was correctly predicted 94.68% of the time. On the other hand, the letter "O" was often confused 

with the letter "Q," but incorrect predictions were relatively infrequent. 

In Figure 4.3 the loss and accuracy graphs are shown, accuracy graph show that both training and 

validation accuracy reach around 97% and stabilize after 20 epochs, indicating good 

generalization without overfitting. The loss curves decrease sharply early on, with training loss 

continuing to slightly decline while validation loss stabilizes, which indicate that the model is 

well-trained. 

 

 

 
Figure 4.3 Accuracy and Loss Graphs 

 

Another important factor in CNN training is the quality of the dataset. For effective training, a 

well-balanced dataset is crucial, meaning each class should have an equal number of samples. 

This balance ensures that the model doesn't become biased toward any particular class. The idea 

of implementing a CNN to recognize all characters (numbers, uppercase, and lowercase letters) 

was abandoned because the classes in EMNIST dataset were not balanced, leading to 

significantly lower accuracy. Additionally, the dataset should be sufficiently large to provide the 

model with enough examples to learn meaningful patterns and generalize well to new data. 

 

4.1.2CNN Testing in Python 

After successfully training the model to achieve satisfactory accuracy, it was tested on some 

handwritten letters. These letters were created using the Paint application and then imported into 

Visual Studio Code for testing by the CNN. Figure 4.4 illustrates the model's prediction for the 

letter "X". The code also provides the execution time and the CPU time for the prediction, which 

latter on is compared with the hardware accelerator timing.   
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Figure 4.4 CNN Testing in Python 

 

Several letters with several types of handwriting were tested and the CNN shows a very good 

performance. 

 

4.2Hardware Accelerator Model Simulation 

The hardware accelerator was written in SystemVerilog and simulated using ModelSim platform, 

which is a simulation tool used for verifying HDL designs, such as VHDL, Verilog, and 

SystemVerilog. It provides a powerful environment for debugging and validating digital circuits 

by allowing users to simulate and analyze waveforms, ensuring the correct functionality of 

designs before implementation. 

The CNN accelerator model was extensively tested through simulation to ensure its 

functionality. During the testing, each layer of the CNN was individually verified to confirm it 

operates correctly. Figure 4.5 shows how the computation process begins when the start signal is 

asserted (active high). When the start signal is asserted, at the first positive edge of the signal, the 

system transitions from the IDLE state to the CONV1 state. This transition indicates that the 

computation for the first convolutional layer is starting. 

Figure 4.6 shows the final stages of the computation. Once all layers have completed their 

operations, the system transitions from the INFERENCE state to the DONE state. At this point, 

the done signal is set high, indicating that the CNN has finished processing and the prediction 

result is now available. 

Also the simulation shows that the prediction was correct, the image that was entered to the CNN 

accelerator was containing letter „E‟, and the prediction was „00100‟ which represents ‟E‟. 
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Figure 4.5 Simulation Waveforms of Convolution Start 

 

Figure 4.6 Simulation Waveforms of Prediction Output 
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Table 4.1 presents the output binary numbers and their corresponding letters, illustrating the 

mapping between the binary outputs of the CNN and the assigned letter labels. 

 

Table 4.1 Mapping of Output Binary Numbers to Assigned Letters 

Binary output Assigned letter 

00000 A 

00001 B 

00010 C 

00011 D 

00100 E 

00101 F 

00110 G 

00111 H 

01000 I 

01001 J 

01010 K 

01011 L 

01100 M 

01101 N 

01110 O 

01111 P 

10000 Q 

10001 R 

10010 S 

10011 T 

10100 U 

10101 V 

10110 W 

10111 X 

11000 Y 

11001 Z 

 

 

The simulation waveforms clearly depict the amount of time each layer takes for computation, as 

illustrated in Figures 4.7, 4.8, 4.9. The convolution layers and the first fully connected layer were 

the most time-consuming, the other two fully connected layers were decreasing in time because 

the number of neurons was less. The pooling layers were comparatively less demanding in terms 

of computation time. 
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Figure 4.7 Simulation Waveforms of CONV1 to S1 transition 

 

Figure 4.8 Simulation Waveforms of state transitions 
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Figure 4.9 Simulation Waveforms of layers state transitions 

 

4.3 Register Transfer Level 

After simulating the CNN accelerator in ModelSim, the design was compiled in Quartus Prime 

platform, and the RTL was generated. RTL was used to describe the circuit's structure and 

behavior at a level that can be synthesized into hardware. Figure 4.10 illustrates the complete 

system, including the NIOS processor, memory, CNN accelerator, and other associated 

components. 
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Figure 4.10 RTL of Complete System 
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4.4 Hardware Implementation of CNN and Results 

After the system composed of NIOS processor and hardware accelerator was successfully 

instantiated, simulated and verified. It was implemented and tested using Cyclone IV 

GX4CX1550 FPGA evaluation platform, on the Intel (Altera previously) DE2i-150 board 

[13].Figure 4.11 illustrates the board, that contains  many futures, one of them is LCD that also 

was used in the project. 

 

 
Figure 4.11 DE2i-150 Board 

 

4.4.1 CNN Prediction Results 

The CNN was tested on a set of 100 images of handwritten uppercase letters. The tests showed 

that 97 out of 100 images were correctly predicted, resulting in an accuracy of 97%. This 

accuracy is very similar to that of the software implementation, with the small difference likely 

due to the fixed-point representation of data. Figure 4.12 illustrates the CNN's prediction for the 

letter „E,‟ which matches the prediction made by the software CNN. 
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Figure 4.12 Prediction of the CNN 

 

Also report on performance counters is given, displaying the time taken and number of clock 

cycles used in the process. The hardware accelerator accounted for 26.9% of the total execution 

time, taking about 0.00444 seconds or 2,220,401 clock cycles, as shown in the report. The LCD 

display of prediction is shown in Figure 4.13. 

 

 
Figure 4.13 CNN Recognition Display on LCD 

 

4.5 Timing Performance 

The implemented design is working under 50 MHz frequency. It takes 825669 clock cycles, and 

0.0165134 seconds to deal with one image, while the hardware accelerator only without dealing 
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with LCD display takes only 222040 clock cycles, and 0.00444 seconds. The speed-up was 

calculated, and Equation 4.1 shows the formula that was used. 

 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =  
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒)
                                                            (4.1) 

 

Compared with the software implemented CNN, which takes 0.8125 seconds to deal with same 

image, FPGA implementation shows an advantage in higher performance. It has a 115x speed-up 

than CPU.  

 

4.6Power Consumption 

Power play power analyzer used by Intel-FPGA Quartus Prime software tool. The power 

analyzer used to measure the thermal power dissipation for the model, t he power consumption in 

the design is 137.42 mW. The power consumption of different part is shown in Figure 4.14. 

 

Figure 4.14 Power Consumption of System 

 

 

The CNN was developed for use on both a software platform and an FPGA, with the FPGA 

running on the Cyclone IV GX FPGA board. The FPGA design on the board was able to meet all 

resource and timing constraints. The CNN on the FPGA showed much better performance than 

the software implementation, achieving faster processing speeds and shorter inference times. 

Moreover, the FPGA-powered CNN demonstrated reduced power usage, rendering it better 

suited for energy-saving tasks. Utilizing FPGA led to increased power efficiency by utilizing 

parallel processing for higher computational performance per watt. This not only boosted system 

performance but also increased scalability and adaptability, highlighting the benefits of hardware 

acceleration in deep learning applications. 
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Conclusion and Future Work 

This project involved designing and implementing a specialized CNN for recognizing 

handwritten characters. Python-based software CNN was implemented. The model underwent 

successful training, obtaining accuracy of 97.89% and a loss of 0.0477. This performance is 

notably strong, especially when compared to other implementations in the field, highlighting the 

effectiveness and robustness of the model. The parameters of trained CNN were extracted and 

saved for hardware implementation. The CNN was modified for faster processing on hardware 

using an FPGA and NIOS processor combo, making use of SystemVerilog hardware description 

language for the execution. This hardware version used fixed-point arithmetic for data 

representation, for its efficiency and speed, as it requires fewer resources and performs faster 

than floating-point arithmetic. This approach also allows for better control over precision, 

making it ideal for resource-constrained environments like FPGAs. In particular, the system 

based on FPGA achieved a processing rate of 0.0165 seconds for each inference, representing a 

significant speedup of around 115 times compared to the software version.  

Additionally, the FPGA system demonstrated efficiency in power consumption, with a 

measurement of 137.42 mW. This project shows the benefits of using FPGA-based approaches 

for deep learning tasks. The FPGA's noteworthy increase in speed and decrease in power usage, 

in comparison to CPU-based software methods, highlight the potential of hardware acceleration 

to improve performance and efficiency in real-world applications. Furthermore, this project 

showcases the effective combination of a soft-core processor and dedicated hardware, a synergy 

made possible by the FPGA. This combination exemplifies the flexibility and power of FPGA 

technology in enhancing the performance of CNN applications. 

 

Future work will focus on advancing to more complex CNN architectures and exploring their 

application in real-time systems. This includes optimizing these advanced models for even faster 

processing and real-time performance in practical scenarios. Potential areas for development 

include tumor detection, where enhanced CNN models can improve early diagnosis through 

medical imaging; autonomous vehicles, where sophisticated CNNs can advance object detection 

and collision avoidance for safer navigation; real-time video surveillance, which can benefit 

from rapid analysis for security threat detection; speech recognition, where optimized CNNs can 

enhance the accuracy and responsiveness of virtual assistants; and medical image analysis, where 

advanced CNNs can aid in more precise and timely diagnostics. These applications aim to 

broaden the scope of FPGA-based deep learning systems, enhancing their utility in dynamic and 

high-demand environments. 
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Appendix A 

The Source Code of CNN_ Top Module 
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Appendix B 

The Source Code of Weight ROM 
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Appendix C 

Pin Assignment of the System 
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