
Department of Computer Engineering

Faculty of Engineering

University of Tripoli

A graduation project is submitted in partial fulfillment of requirements for

the degree of Bachelor in Computer Engineering

Design and Implementation of Optimized CNN for

Character Recognition on FPGA-based NIOS II

Embedded Processor

By:

Nadia Anwar Ben Salem

Supervised by:

Dr. Mohamed Muftah Eljhani

Fall 2023

Design and Implementation of Optimized CNN for

Character Recognition on FPGA-based NIOS II

Embedded Processor

By:

Nadia Anwar Ben Salem

 Approved by:

 ……………………………………

 Dr. Mohamed Eljhani

 ……………………………………

 Dr. Muharrem Drebi

 ……………………………………

 Dr. Hussein Magboub

Department of Computer Engineering

Faculty of Engineering

University of Tripoli

Intellectual Property Rights Identification Form for Projects and

Scientific Research

This form must be read and signed by students working on graduation projects, master's theses or

any other research activities conducted at University of Tripoli / Faculty of Engineering /

Department of Computer Engineering.

 Intellectual property rights for projects and research activities and their results (such as

graduation projects, master's theses, patents and any marketable research product) belong to the

University of Tripoli/Department of Computer Engineering. These rights are subject to the laws,

regulations and instructions of the University relating to intellectual property and patents.

 I agree (Student‟s Name): ___

Student‟s ID: ___

As a condition of my participation in the research project entitled:

All intellectual property rights of the above-mentioned project or scientific research shall be

attributable to the University of Tripoli/Department of Computer Engineering This requires me

to inform the competent authority of the University of any invention or discovery that may result

from such research and to be fully confidential therein and to work through the University to

obtain the patent that may result from such research. I am also committed to placing the name of

Tripoli University/Department of Computer Engineering and the names of all researchers

involved in the research on any scientific bulletin for full research or its results, including

publication of graduation projects, master's theses, doctorates, publication in journals, scientific

conferences in general and posting on websites. I must adhere to the principles of copyright

approved by the University of Tripoli/Department of Computer Engineering.

Student Signature: __

Date: ___

Department of Computer Engineering

Faculty of Engineering

University of Tripoli

Plagiarism Declaration

I (Student‟s Name): __

Student‟s ID: ___

hereby declare that I am the sole author of the graduation project entitled:

and that neither any part of the thesis nor the whole of the thesis has been submitted to any

University or Institution for obtaining any degree / diploma / academic award.

This project was written by me and in my own words, except for quotations from published and

unpublished sources which are clearly indicated and acknowledged as such. I am conscious that

the incorporation of material from other works or a paraphrase of such material without

acknowledgement will be treated as plagiarism, subject to the custom and usage of the subject,

according to the University Regulations on Conduct of Examinations.

 I shall be solely responsible for any dispute or plagiarism issue arising out of the graduation

project.

Signature: ___

Date: ___

i

Abstract

Convolution neural network (CNN) character recognition has revolutionized the field of optical

character recognition (OCR) technology, making it more accurate and efficient than ever before.

While the impact of CNN character recognition has been overwhelmingly positive, there are also

some limitations and challenges that need to be addressed in order to fully realize its potential.

The software implementation, using a traditional CPU-based approach, faced challenges such as

slower processing speeds and limited parallelism, which hindered real-time character

recognition. In contrast, the hardware implementation effectively addressed these issues by

leveraging parallelism, allowing multiple computations to be executed simultaneously.

This project explores the hardware implementation of CNN on NIOS II soft-core processor on

FPGA. NIOS II and FPGA combination emerged as an optimal choice for this implementation

due to their complementary strengths. This improvement is particularly impactful in applications

requiring real-time image processing, such as autonomous driving systems, Digital Signal

Processing (DSP) or live video surveillance, where reduced processing time can significantly

enhance system responsiveness and efficiency. NIOS II processors offer flexibility and ease of

integration, while FPGAs provide exceptional parallel processing capabilities, crucial for the

efficient execution of CNNs.

The research involved the development of both software and hardware implementations of a

CNN model that achieved 97.89% accuracy. The software implementation utilized a traditional

CPU-based approach, while the hardware implementation leveraged the parallel processing

capabilities of FPGAs. Comparative analysis demonstrated a significant performance

improvement, with the hardware implementation achieving a speedup factor of approximately

115 times over the software counterpart. Additionally, the hardware design exhibited a power

consumption of 137.42 mW, highlighting its efficiency. This project underscores the potential of

FPGA-based accelerators in enhancing the efficiency of computationally intensive neural

network tasks, offering insights into practical applications and future developments in the field of

hardware-accelerated machine learning.

ii

Acknowledgements

I would take this opportunity to appreciate those who contributed in preparation of this

graduation project. Above all, I would like to express my gratitude to my project supervisor, Dr.

Mohamed Eljhani for his support, constructive criticism, and constant motivation towards the

success of this project. I would also like to acknowledge the support of faculty members of the

Computer Engineering Department for offering me the conducive environment and resources for

my study. My peers and friends deserve my gratitude as they have helped me a lot through their

efforts and encouragement during this research.

Finally, I would like to express my deepest gratitude to my family for their unwavering support

and encouragement throughout this academic journey. To my parents, whose constant belief in

my abilities and dreams has been a source of immense motivation, I am profoundly grateful.

Your love, patience, and sacrifices have provided the foundation upon which I have built this

work.

A special thanks to my siblings for their understanding and support during the times when I was

deeply immersed in this project. Your encouragement and presence have been a source of

strength and comfort.

iii

Table of Contents

Abstract………………………………………………………………………………………...….i

Acknowledgements………………………………………………………………….………..….ii

List of Figures………………………………………………………………………………….....v

List of Abbreviations……………………………………………………………………...……vii

Chapter 1: Introduction…………..……………………………………………………….…….1

1.1 FPGA Platform…………………...……………………………………………………...…3

1.2 FPGA Resources………………...……………………………………………………….…4

1.3 NIOS II Processor…………...…………………………………………………………...…5

1.3.1 Key Features of NIOS II…...….…….………………………………………………....…5

1.4 Python in Machine Learning with Pytorch……...…………………………………...…..…6

1.5 CNN………...………………………………………………………..……………………...6

Chapter 2: Experimental Background………………………………………………………….8

2.1 Virtual Studio Code…………………………………..………………………...…………...8

2.2 ModelSim………………………………..…………………………..……………………...8

2.3 Quartus Prime ……………………………...………………………..……………………...8

2.3.1 Features of Quartus Prime……………...………………………..……………………...9

2.3.2 Platform Designer………………...……………………………..……………………...9

2.4 Eclipse Software………………………..…………………………..……………………...10

Chapter 3: Methodology……………………………………………………………....……..…11

3.1 Preparing a dataset for model training…………………………………...……....……..…11

3.2 Preprocessing of images for recognition………………………………………....……..…12

3.3 CNN Layers……………………………………………………………………....……..…12

3.3.1 Convolution Layer………………………………………....………………....……..…12

3.3.2 Padding…………………………………………………….………………....……..…13

3.3.3Stride…………………………………………………......…………………………..…14

3.3.4 Activation Function………………………………………..………………....……..…15

3.3.5 Pooling Layer……………………………………………………....………....……..…15

3.3.6 Fully Connected Layer……………………………………..………………....……..…16

iv

3.4 CNN Design ………………………..……..…16

3.5 Training Process of the CNN………………………....……………………………..…..…17

3.6 Software Implementation of CNN……………………………………..………....……..…20

3.7 Hardware Implementation of CNN………………………………….…………....……..…21

3.7.1 Pixel Conversion to Fixed-Point Format………………………..…………....……..…22

3.7.2 Modules of Hardware Accelerator……………………................…………....……..…23

3.7.2.1 Convolution Module……………………………....………..…………....…......…24

3.7.2.2 Pooling Module……………...………………………….……………….……..…26

3.7.2.3 Fully Connected Module………………………………………...……....……..…26

3.7.2.4 Max_Value Module………………………………………………...…....……..…27

3.7.2.5 Interface…………….…………………………………………………....……..…27

3.7.3Integration of CNN Accelerator with NIOS II Processor…………...………....……..…28

Chapter 4: Results and Discussion…………...………………………………………………..32

4.1 Python Implementation and Results…………..…………………………………………..32

4.1.1 Tensorflow and Keras Libraries…………..….……………………………………….33

4.1.2 CNN Testing in Python………....………..…………………………………………...34

4.2 Hardware Accelerator Model Simulation……..………………………………………..35

4.3 Register Transfer Level……….………….……………………………………………….39

4.4 Results of Hardware Implementation of CNN…………..………………………………..41

4.4.1 CNN Prediction Results………………………………..……………………………..41

4.4.2 Timing Performance………………………….………………………………………42

 4.4.3 Power Consumption…………………….……………………………………………43

Chapter 5: Conclusion and Future Work……………………………………………………..44

References…………………………………………………………………..…………………..45

Appendix A:The Source Code of CNN_ Top Module………………………………………..47

Appendix B: The Source Code of Weight ROM…………………………...…………………54

Appendix C:Pin Assignment of the System………………………….………………………..56

v

List of Figures

Figure 1.1 FPGA Architecture…………………………………………………………………….5

Figure 2.1 Platform Designer GUI……………………………………………………………….10

Figure 3.1 EMNIST Dataset……………………………………………….…………………….11

Figure 3.2 Structure of CNN………………………………………….………………………….12

Figure 3.3 Structure of convolutional layer………………………..…………………………….13

Figure 3.4 Convolution with and without zero padding…………...…………………………….14

Figure 3.5 Convolution with different strides…………………...……………………………….14

Figure 3.6 Max pooling vs. Average pooling…………………...……………………………….15

Figure 3.7 CNN Tested Architectures……………………………….……………………………….17

Figure 3.8 Different Architecture Graphs ………..…………..………………………………….18

Figure 3.9 CNN Architecture…………………………………………………………………….19

Figure 3.10 CNN Implementation in Python……..…………..………………………………….22

Figure 3.11 Model Summary in Python……………………..…..……………………………….22

Figure 3.12 System Model Overview……………………………………...…………………….23

Figure 3.13 Quantization of CNN Biases………………………………….…………………….24

Figure 3.14 Block Diagram of Top Module……………………………….…………………….25

Figure 3.15 CNN_Top Module State Machine………………………….……………………….26

Figure 3.16 State Machine of Convolutional Layer Module…………………………………….27

Figure 3.17 State Machine of Max_Value Module…………………..………………………….29

Figure 3.18 Interface between NIOS II and Accelerator……..………………………………….30

Figure 3.19 NIOS II Processor Architecture………...……………..…………………………….31

Figure 3.20 View of the System in Platform Designer…………….…………………………….32

Figure 4.1 CNN Accuracy during training…………………………...………………………….32

Figure 4.2 Confusion Matrices ………………………………………………………………….33

Figure 4.3 Accuracy and Loss Graphs………………………………..………………………….34

Figure 4.4 CNN Testing in Python………………………………...…………………………….35

Figure 4.5 Simulation Waveforms of Convolution Start…………..…………………………….36

Figure 4.6 Simulation Waveforms of Prediction Output…………..…………………………….36

Figure 4.7 Simulation Waveforms of CONV1 to S1 transition………………………………….38

vi

Figure 4.8 Simulation Waveforms of state transitions………………………………..………….38

Figure 4.9 Simulation Waveforms of layers state transitions………………………...………….39

Figure 4.10 RTL of Complete System…………………………………………………..……….40

Figure 4.11 DE2i-150 Board………………………………………………………….………….41

Figure 4.12 Prediction of the CNN…………………………………………………...………….42

Figure 4.13 CNN Recognition Display on LCD……………………………………...………….42

Figure 4.14 Power Consumption of System………………………………………….………….43

vii

List of Abbreviations

CNN Convolutional Neural Network

FPGA Field Programmable Gate Array

OCR Optical Character Recognition

SOPC System on a Programmable Chip

DSP Digital Signal Processing

CPU Central Processing Unit

GPU Graphics Processing Unit

SoC System on Chip

NLP Natural Language Processing

BNN Binary Neural Network

HLS High Level Synthesis

RTL Register Transfer Level

LPFP Low Precision Floating-Point

EMNIST Extended Modified National Institute of Standards

ASIC Application Specific Integrated Circuits

LUT Look Up Table

RAM Random Access Memory

ROM Read Only Memory

BRAM Block Random Access Memory

LE Logic Element

GPIO General Purpose Input/Output

UART Universal Asynchronous Receiver-Transmitter

ReLU Rectified Linear Unit

SVD Singular Value Decomposition

LCD Liquid Crystal Display

MM Memory Mapped

IP Intellectual Property

HDL Hardware Description Language

1

Introduction

This chapter provides a comprehensive overview of the research, including the problem

statement, available solutions, project objectives, and an outline of the report structure. It sets the

stage by presenting relevant information, theories, and prior work that the project builds upon.

The chapter explores the origins, features, and approaches utilized to successfully complete the

project. It delves into current research and related works on CNNs, particularly their application

on the NIOS II processor and FPGA platforms. CNN is a deep learning algorithm, that had

revolutionized many scientific and technological fields by providing powerful methods for

processing and analyzing visual and spatial data. CNN shows excellent performance in solving

complex computer vision problems including image classification, recognition, segmentation,

objects and face detection. An increasing interest in CNNs is becoming more and more

noticeable in medical imaging, as they have shown significant potential in the detection and

diagnosis of breast cancer. In addition to breast cancer, CNNs have shown significant potential in

the detection and diagnosis of several other medical conditions, including lung cancer, brain

tumors, skin cancer, diabetic retinopathy, Alzheimer's disease, and cardiovascular diseases. The

applications of CNN are much wider, they are also used in Natural Language Processing (NLP),

astronomy, autonomous systems such as self- driving cars, security and surveillance, and much

more.

However, the high performance of CNN algorithms comes with significant computational

demands. These algorithms require a large number of parameters and involve extensive

mathematical operations, which poses challenges for software implementation. CNNs require

significant processing power and extensive memory to handle their large number of parameters

and operations, which can be challenging on standard CPUs. Additionally, the scalability of

CNNs on conventional CPUs is restricted due to their computational complexity, which requires

massive parallel processing that CPUs are not optimized for. Additionally, limited memory

bandwidth and parallelism capabilities in CPUs create bottlenecks during operations like

convolution and pooling, leading to slower performance and increased resource usage.

Optimizing CNNs for specific hardware restrictions can be complex, and the efficiency of the

implementation is often dependent on the capabilities of underlying libraries and frameworks. In

addition, while software implementations can utilize multi-threading, they may not fully take

advantage of parallel processing as effectively as specialized hardware like Graphics Processing

Units (GPUs) or Field-Programmable Gate Arrays (FPGAs).

One approach for optimization is model simplification. Techniques like pooling, pruning, and

variations of conventional CNN algorithms such as lightweight architectures, and quantization

have been developed to enhance resource efficiency. On the other hand, there is a growing trend

towards using high-performance hardware platforms. GPUs and FPGAs are particularly noted

for their capability to handle large-scale parallel operations. While GPUs are widely used for

2

CNN tasks due to their high performance and ease of use, choosing a NIOS II processor

combined with FPGA for CNN implementation can offer significant advantages over GPUs,

particularly in specialized applications such as embedded systems, real-time processing, edge

computing, and low-power devices. The NIOS II soft-core processor can be configured and

optimized for specific tasks, allows for tailored control and management of the CNN operations

running on the FPGA. This setup provides exceptional customizability, enabling precise

optimization of both the hardware and software aspects of the CNN implementation. FPGAs

offer highly parallel processing capabilities and can be customized to accelerate specific CNN

functions, leading to higher speed and improved power consumption compared to GPUs.

Additionally, the integration of NIOS II with FPGA supports real-time processing and

predictable performance, which are critical for applications with strict timing requirements. The

combination of NIOS II and FPGA can also result in cost-effective solutions for large-scale

implementations, where power consumption and thermal management are essential

considerations. This approach allows for an efficient solution that maximize the strengths of both

the processor and the FPGA, making it a powerful alternative to traditional GPU-based

implementations for specific CNN applications.

FPGAs can be programmed to implement custom hardware accelerators tailored to the specific

requirements of CNNs. Zhang proposed a high-performance FPGA-based accelerator for CNNs,

demonstrating substantial improvements in speed and energy efficiency compared to CPU and

GPU implementations [1]. Naveen Suda explored a hardware-software co-design approach for

accelerating CNNs on FPGA-System on Chip (SoC) platforms, leveraging both FPGA fabric and

NIOS II embedded processor to optimize performance [2]. Several studies have focused on

implementing CNN-based handwritten character recognition systems on FPGA platforms with

embedded processors. Jiang presented a handwritten digit recognition system using a CNN

accelerator on an FPGA, controlled by a NIOS II processor. The system achieved real-time

performance with high accuracy, demonstrating the feasibility of such implementations [3]. P.

Wang implemented a binarized neural network (BNN) on FPGA for handwritten digit

recognition. The BNN achieves 0.136 W power consumption and 18 μs image identification

time. The accuracy rate is 85%, even without a batch normalization layer, the achieved accuracy

is not as efficient as the one that was achived in this project [4].Jiang used HLS tools to deploy

adaptable convolution and pooling IP cores on the ZYNQ7020 FPGA, achieving 74ms

recognition time per digit and 98.89% accuracy at 100MHz. Siyu Zhu and Hu Huang implement

a manual hardware-level CNN on an Intel Cyclone10 FPGA, achieving 0.0176 ms recognition

time per digit and 97.57% accuracy at 150MHz. These works highlight the feasibility and

efficiency of FPGA-based CNNs for real-time applications [5].Expanding on these

advancements, several papers have specifically addressed CNN-based handwritten letter

recognition on FPGA platforms. These studies typically focus on optimizing network

architectures and implementation strategies to handle the broader and more complex problem of

letter recognition compared to digit recognition. Ke Yu proposed a hardware optimization

approach for OCR systems using Memory-Centric Computing and a “Memory-Tree” algorithm.

3

The algorithm was initially tested in C/C++ and OpenCV, then converted to RTL with Xilinx

Vitis. The FPGA-based system recognized English capital letters and numbers in 34.24 µs and

achieved a 77.87% reduction in power consumption compared to a traditional processor-based

system [6]. De Oliveira developed a heterogeneous system for scene text character recognition,

tested on the Terasic DE2i-150 platform, it achieved 65.5% accuracy and processed up to 11

frames per second while using only 11% of the FPGA's logic elements. This system balances

performance with resource efficiency for embedded applications [7]. Furthermore, several

studies have explored the use of fixed-point and floating-point data representations to optimize

CNN performance on FPGA platforms. Wang proposed an 8-bit low-precision floating-point

(LPFP) quantization method for FPGA-based CNN acceleration, achieving negligible accuracy

loss (within 0.5%) without re-training. Their implementation on Xilinx FPGAs significantly

improved throughput and DSP utilization, particularly for VGG16 and YOLO, compared to

existing accelerators [8]. In their work, Jiang proposed a hardware-friendly quantization scheme

for CNNs using improved logarithmic quantization, achieving high accuracy with negligible loss

and efficient resource utilization on FPGA. The implementation on Zynq XC7Z020 reached

6.008W power consumption, demonstrating high resource efficiency [9]. Yanamala developed a

16-bit fixed-point FPGA accelerator on the PYNQ-Z2 board, achieving 82.45% speed more than

NVIDIA Tesla K80 GPU. The design, optimized with techniques like Singular Value

Decomposition (SVD), array partitioning, and loop unrolling, showed significant speed

improvements over CPU and GPU implementations for MNIST and Tumor dataset classification

[10].

The achieve of this research:

 Design CNN architecture for specific problem – handwritten characters (letters)

recognition.

 Implement the proposed CNN design in python, train it with Extended Modified National

Institute of Standards and Technology (EMNIST) dataset.

 Implement the CNN on FPGA-based NIOS II processor on DE2i-150 board to utilize the

power of FPGA for high speed, parallel processing, high performance, energy efficiency,

and reconfigurability for acceleration.

 Analyze the resource usage of the FPGA solution and make a comparison in performance

and efficiency among hardware, and software implementation.

1.1 FPGA Platform

FPGA is the abbreviation of Field programmable Gate Array. It is a type of integrated circuit that

can be programmed post-manufacturing by the user. FPGAs are different from traditional

processors in that they do not have a fixed architecture; instead, they have programmable logic

blocks and reconfigurable interconnects that can be customized for specific tasks. The flexibility,

low latency, and high energy efficiency are main advantages of FPGAs, which made them

4

perfect for tasks that need custom hardware features, high speed, and parallel processing

abilities.

Therefore, FPGA is widely used in producing highly customizable SoCs, ASIC verification, high

performance computing etc.

1.2 FPGA Resources

Each resource plays a crucial role in enabling the FPGA to perform a wide range of functions,

from basic logic operations to complex signal processing and communication tasks. The main

resources are:

Look-up Table (LUT)

LUT works as a generator of functions. In the Cyclone IV GXarchitecture, 5-input LUTs are

implemented. Wide multiplexers, along with other components like LUTs, flip flops, arithmetic,

and carry chains, are combined to create a Logic Elelment (LE). LE serves as the primary tool

for designing versatile combinatorial and sequential circuits on FPGA.

Digital Signal Processor (DSP)

FPGA-based DSP slices can execute a range of frequently utilized arithmetic functions. Using

hardware parallelism with DSP can increase data throughput and efficiency for DSP

applications. One DSP slice can be set up to carry out various arithmetic operations, such as 4-

input addition, multiplication, multiply-accumulation, etc. The input and output data width can

also be adjusted. The DSP slice is designed for minimal power usage, fast performance, compact

dimensions, and flexibility.

Block Random Access Memory (BRAM)

BRAM is the primary memory component found on FPGA devices. They are dispersed and

mixed with other customizable components such as DSP and LUT on FPGA. BRAM benefits

from the flexibility provided by close interaction with DSP and LUT. In Cyclone IV GX devices,

the block RAM can hold a maximum of 16 Kbits of data. It could be arranged in different

memory block configurations. It could be either RAM or ROM. It can have one port or it can

have two ports. Also there is ability to define the port width and number of lines.

FPGA architecture consist of thousand of LEs, known also as logic blocks, surrounded by a

system of programmable interconnects, that routs signals between LEs. Input/output blocks

interface between the FPGA and external devices. The FPGA architecture is shown in Figure

1.1.

5

Figure 1.1 FPGA Architecture

1.3 NIOS II Processor

The NIOS processor, a soft processor core made by Intel (previously Altera), is intended for

incorporation into FPGA designs. It can be personalized to fit specific application needs, making

it a flexible option for embedded processing duties on an FPGA. NIOS II processor is based on

the Harvard architecture, and incorporates many enhancements over the original NIOS

architecture, making it more suitable for a wider range of embedded computing applications,

from DSP to system-control.

1.3.1 Key Features of NIOS II

 Customizable Architecture

The NIOS II processor have multiple core variants such as fast, standard, and economy, each

offering different balances of performance and resource usage. Also an advantage of NIOS is

the ability of add custom instructions, to accelerate application-specific tasks.

 Scalability

The processor supports multiple address and data widths, allowing it to be scaled according

to application requirements. Also NIOS can interface with various types of memory,

including on-chip RAM, external memory, and cache, ensuring flexible memory

management.

6

 Integration

As a soft processor, the NIOS core is implemented within the FPGA fabric, enabling tight

integration with other FPGA resources. It also supports a wide array of customizable

peripherals, like timers, UARTs, and GPIOs.

1.4 Python in Machine Learning with Pytorch

Python is widely used in machine learning because of its ease of use, readability, and wide range

of libraries and frameworks available. It offers a strong environment for manipulating data,

creating visualizations, and developing machine learning models.

PyTorch was created by Facebook's AI Research lab as an open-source machine learning

library. It offers a versatile and user-friendly system for deep learning, commonly utilized in

research and production settings. PyTorch provides dynamic computation graphs, allowing for

easier adjustments to the network behavior in real-time, as opposed to the static computation

graphs found in TensorFlow.

PyTorch simplifies the process of creating, training, and deploying CNNs. Its flexible

computational graph and wide range of libraries allow novices and professionals alike to create

advanced deep learning models.

1.5 CNN

A Convolutional Neural Network is a deep learning model that excels in image classification

tasks. CNNs extract image features through convolutional operations and utilize these features to

categorize objects. The network is designed to automatically and adaptively learn spatial

hierarchies of features through training. When classifying an image, the network aggregates the

learned features to determine and vote for the most likely class the image belongs to.

Deep learning algorithms operate in two phases: training and inference. In the training phase,

CNNs use a dataset of labeled images to learn, employing the backpropagation algorithm to

update the network's parameters. Once the model is well-tuned and trained, it is used to classify

new data samples, a process known as inference.

During inference, the structure and parameters of the neural network remain fixed, and the model

processes each new data sample. Consequently, optimizing the inference phase is a key focus, as

it directly impacts the efficiency of classifying new inputs.

This thesis is organized in the following structure:

 Chapter 1 is an introduction that describes the problem. It introduces the structure of

CNN. Include an introduction to FPGA and Nios II soft-core processor. It also include

literature review, which also including researches of resource optimized CNN models.

7

 Chapter 2 describes the main tools utilized in this project for software development and

hardware design.

 Chapter 3 presents the proposed methodology, that covering the design and

implementation of CNN system model, with the software and hardware implementation

steps.

 Chapter 4 is dedicated to presenting the results, and comparative analysis of the project.

 Chapter 5 includes conclusion and future work.

8

Experimental Background

Developing and fine-tuning a CNN demands a strong experimental setup with specialized

software tools for software development and hardware design. This chapter describes the main

tools used in the project: Virtual Studio Code, ModelSim, Quartus Prime, and Eclipse, all of

which were crucial at various points in the development process.

2.1 Virtual Studio Code

Visual Studio Code (VS Code) is a well-regarded open-source integrated development

environment (IDE) created by Microsoft, known for its versatility, wide range of features, and

compatibility with various programming languages. VS Code played a critical role in setting up

and training the CNN in Python for this project. The streamlined coding process was enhanced

by the IntelliSense and code auto completion features, and effective troubleshooting was made

easier by the integrated debugging tools. The Git integration within the IDE facilitated seamless

version control, aiding in collaboration and project management. Furthermore, the lightweight

design and ability to work across different platforms of VS Code ensured a quick and efficient

development process, allowing users to personalize the environment using numerous extensions.

This makes it a crucial tool for handling the intricate tasks required in CNN development and

training.

2.2 ModelSim

ModelSim is a popular simulation tool used for verifying digital logic designs, especially those

created in hardware description languages such as VHDL, Verilog, and SystemVerilog. Created

by Mentor Graphics, ModelSim is well-known for its robust capabilities that enable to test and

troubleshoot hardware designs prior to being implemented on physical devices such as FPGAs or

ASICs. ModelSim played a crucial role in the simulation of the hardware accelerator for this

project, as it provided detailed waveform visualization that was essential for verifying the correct

operation of the CNN design. By examining these waveforms, tracing signal behaviors and

interactions within the accelerator was enable, allowing for early detection and resolution of

potential issues before synthesis. This made ModelSim an indispensable tool in ensuring the

functionality and reliability of the hardware implementation.

2.3 Quartus Prime

Quartus Prime is a comprehensive software suite developed by Intel (formerly Altera) for the

design, synthesis, and implementation of digital circuits on FPGAs, and SoCs. It is widely

recognized for its powerful toolset that supports the entire FPGA design flow, from initial

concept to final hardware deployment.

9

2.3.1 Features of Quartus Prime

 Design Entry and Synthesis:

Quartus Prime offers multiple options for design entry, including schematic capture,

hardware description languages like VHDL and Verilog, and block-based design. Once the

design is captured, the software performs synthesis, converting the high-level code into a

netlist that represents the logic gates and connections needed to implement the design on an

FPGA.

 Optimization and Resource Management

The tool includes advanced optimization algorithms that focus on improving the performance

and resource utilization of the design. Quartus Prime can optimize for various factors such as

speed, power consumption, and area, helping to ensure that the design meets the specific

constraints of the target FPGA.

 Place-and-Route

After synthesis, Quartus Prime performs place-and-route, where the synthesized netlist is

mapped onto the physical resources of the FPGA. The tool determines the optimal placement

of logic elements and routes the connections between them, taking into account timing

constraints and the physical architecture of the FPGA.

 Simulation and Verification

Quartus Prime integrates with simulation tools like ModelSim to allow for the verification of

designs before and after synthesis. This ensures that the final implementation behaves as

expected when deployed on hardware.

 Device Support and IP Integration

Quartus Prime supports a wide range of Intel FPGA devices and includes an extensive library

of pre-built Intellectual Property (IP) cores, which can be integrated into the design to add

functionality without the need to develop it from scratch. These IP cores cover a variety of

functions, including processors, memory controllers, and communication interfaces.

2.3.2 Platform Designer

Platform Designer, previously called Qsys, is a robust system integration tool in Intel's Quartus

Prime software suite, aimed at making the creation of intricate FPGA-based systems easier.

Designers can use a visually intuitive interface to link and set up different IP cores like

processors, memory interfaces, and custom logic. Platform Designer streamlines numerous

system integration tasks by automating the generation of interconnects, clock domain

management, and maintaining data flow consistency across components. It further facilitates the

development of personalized IP blocks and their smooth incorporation into current IP

collections, allowing for adaptability and expandability in system planning. By simplifying the

10

integration process, Platform Designer speeds up development cycles, facilitating the design of

complex embedded systems with numerous components and peripherals. The graphical user

interface of Platform Designer is shown in Figure 2.1.

Figure 2.1 Platform Designer GUI

2.4 Eclipse Software

Eclipse, widely utilized in embedded systems and Java programming, is an open-source

integrated development environment (IDE) for software development. It offers a strong

foundation with a diverse range of tools and plugins for various stages of project development,

making it a flexible option for developers handling intricate projects. Eclipse played a crucial

role in the project, particularly in conjunction with the NIOS II Embedded Design Suite. It

provided a comprehensive platform for developing and debugging the C++ code that ran on the

NIOS II processor, which managed the FPGA-based CNN accelerator. Additionally, its

integration with version control systems allowed for effective project management and

collaboration.

11

Methodology

This chapter gives a thorough explanation of the methodology used in this project. This research

work focuses on exploring how CNN can be successfully implemented on NIOS II processor

with a hardware accelerator, and details the steps and tactics used to accomplish this objective. A

CNN was designed and implemented in Python to train on the dataset. The weights and biases

learned during training were then extracted and used to create a hardware accelerator, that was

connected as custom IP to NIOS II processor. This method connects software-guided training

with physical hardware, improving the CNN's effectiveness and productivity.

 3.1 Preparing a dataset for model training

The dataset selected for this project is the EMNIST [12] dataset specifically designed for letters.

This dataset is famous for its thorough representation of all 26 letters of the English alphabet,

with each letter corresponding to a distinct class from A to Z. Each class contains 2,400 samples,

providing a diverse and strong representation of handwritten letter variations. A scope of

EMNIST dataset is shown in Figure 3.1. Dataset includes pictures with white letters on a black

background. This color combination creates a sharp contrast between the characters and the

background, making it easier to differentiate them for neural networks training. The dataset was

initially in CSV file format.

Figure 3.1 EMNIST Dataset

A MATLAB script was then employed to analyze the CSV file and extract every type of letters

in a structured manner. Afterwards, the data that was retrieved was transformed into image form,

with every image adjusted to a uniform size of 28×28 pixels.

12

3.2 Preprocessing of images for recognition

Tools from OpenCV library were used to preprocess the image. The cv2.imread() function was

used for image loading in grayscale mode, converting it to a single-channel image instead of a 3-

channel RGB image. To resize the image into 28×28 pixel resolution the cv2.rezise()function

was used. Then the pixel values, which were originally range from 0 to 255 (grayscale), where 0

represents black, while 255 represents white, are normalized by dividing them by 255. This

scales the pixel values to a range between 0.0 and 1.0, which is common in many image

processing and machine learning tasks. After the preprocessing images were ready to feed the

CNN for training and testing.

3.3 CNN Layers

A CNN is organized into layers. For a character recognition task, the network starts with an input

layer that receives the image of character and ends with an output layer that provides values

representing the probability of different classes. Between these layers, there are several hidden

layers, including convolutional layers, activation functions, pooling layers, and fully connected

layers, which process and transform the data. An example of this structure is shown in Figure

3.2.

Figure 3.2 Structure of CNN

3.3.1 Convolution Layer

The convolutional layer is primarily used for feature extraction in neural networks. It

accomplishes this by initially applying a convolution function, followed by an activation

function on the resulting output. Multiple convolutional layers are typically utilized to

progressively extract and refine features from the input data.

13

A convolutional layer has M input channels and N output channels. Each input channel contains a

feature map sized Wf ·Hf . The M ·Wf ·Hf input convolves with a convolution kernel sized M · Wk

· Hk and produces a Wf · Hf output feature map in one of the output channels. Figure 3.3 shows a

convolution with a single kernel. Convolution kernels contains trained weights of the neural

network. Convolution with N such kernels produces an output sized N · Wf · Hf .

Figure 3.3 Structure of Convolutional Layer

Wf is the feature map width, and Hf is the feature map height. Wk is the kernel width, and Hk is

the kernel height. For each pixel in input C and output G, the expression is shown in Equation

3.1, where K represents the convolution kernel.

𝐺 𝑛, 𝑥, 𝑦 =

𝐻𝑘
2

𝑗=−
𝐻𝑘

2

𝑊𝑘
2

𝑖=−
𝑊𝑘

2

𝑀−1

𝑚=0

= 𝐶 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 · 𝐾 𝑛, 𝑖, 𝑗 (3.1)

3.3.2 Padding

The size of output feature maps will shrink due to convolution. Padding is a technique used to

control the spatial dimensions of the output feature maps. When applying a convolution

operation, the filter or kernel slides over the input data, and padding helps manage the size of the

resulting feature map.

In convolution there are mainly two types of padding: valid padding and same padding. Valid

padding, also known as no padding, involves applying the convolution operation without adding

any extra pixels to the input. This results in a smaller output feature map compared to the input,

as the convolution filter is only applied where it fully overlaps with the input data. On the other

hand, same padding, also known as zero padding, involves adding extra pixels (usually zeros)

around the input's border. This approach ensures that the output feature map retains the same

spatial dimensions as the input, allowing the convolution operation to cover the entire input,

14

including its edges. Figure 3.4 shows how different types of padding affect the size of the output

future maps.

Figure 3.4 Convolution with and without zero padding

3.3.3 Stride

Stride determines the number of steps the convolution kernel moves during the convolution

process and also defines the factor by which the output is downscaled. Figure 3.5 illustrates a 2D

convolution using a 2 by 2 convolution kernel with a stride of 1, and 2.

Figure 3.5 Convolution with different strides

15

To determine the spatial dimensions of the output feature maps from a given input size Win×Hin ,

kernel size Wk×Hk , stride S, and padding P, the output size Wout×Houtcan be calculated as shown

in Equation 3.2.

𝑊𝑜𝑢𝑡 =
𝑊𝑖𝑛 − 𝑊𝑘 + 2𝑃

𝑆
 + 1 , 𝐻𝑜𝑢𝑡 =

𝐻𝑖𝑛 − 𝐻𝑘 + 2𝑃

𝑆
 + 1 (3.2)

3.3.4 Activation Function

An activation function is applied to the feature map and the result is forwarded to the next layer

as input. This function introduces nonlinearity to the network, allowing it to learn more complex

patterns and high-order polynomials. By incorporating nonlinearity, the activation function

enhances the network's ability to handle complicated tasks and improve its overall learning

capability. Most common activation function is Rectified Liner Units (ReLU), shown in the

Equation 3.3.

 𝑅𝑒𝐿𝑈 𝑥 =
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

 (3.3)

3.3.5 Pooling Layer

Pooling layer segment the input data into smaller regions, known as pooling windows or

receptive fields, and apply an aggregation operation within each region, such as taking the

maximum or average value. This process reduces the spatial dimensions of the feature maps,

resulting in a more compact and condensed representation of the input data. By decreasing the

size of the feature maps, pooling layers help to simplify the data and lower computational

demands, while maintaining the essential features for further analysis.

The difference between max-pooling and average-pooling layers output is shown in Figure 3.6.

Figure 3.6 Max pooling vs. Average pooling

16

For pooling layer with stride of 2 the output future map is reduced into
1

4
 of the input size as

result.

3.3.6 Fully Connected Layer

In a fully connected layer, the feature map from the previous layer is transformed into a linear

structure. Each element of this feature map functions as a neuron, and every neuron is fully

connected to all neurons in the subsequent layer. In a fully connected layer with M input neurons

and N output neurons, and for each neuron in input X and output Y, the expression is shown in

Equation 3.4, where W represents the weight of each connection, and B represents the bias of

each output neuron.

 𝑌 𝑛 = 𝑋[𝑚]

𝑀−1

𝑚=0

. 𝑊 𝑚, 𝑛 + 𝐵 𝑛 (3.4)

In a CNN, there can be multiple fully connected layers, each typically followed by a ReLU

activation function.

However, the final fully connected layer usually employs a softmax activation function to output

a probability distribution over the possible classes. The softmax function converts the raw output

scores from the network into probabilities, which sum to one, making it ideal for multi-class

classification problems.

For an input vector z, the softmax function is defined as in Equation 3.5. In the equation K is the

number of classes, zi is the input score for class I, and e is the base of the natural logarithm.

 𝜎 𝑧𝑖 =
𝑒𝑧𝑖

 𝑒𝑧𝑗𝐾
𝑗=1

 𝑓𝑜𝑟 𝑖 = 1,2, …… , 𝐾 (3.5)

3.4 CNN Design

In this research, different CNN structures were investigated to find the best model for letter

recognition. Various configurations were tested, such as adjusting the number of layers, filter

sizes, number of channels, and types of activation functions. For the convolution layer ReLU

was selected as the activation function because of its simplicity and computational efficiency,

which are essential for handling large datasets. In contrast to functions such as Sigmoid or Tanh,

ReLU assists in addressing the issue of vanishing gradient, allowing for quicker and more

efficient learning in deep neural networks. The network's capacity to generate sparse activations

enhances generalization, and its nonlinearity enables capturing intricate patterns in character

shapes. As the pooling layer the max pooling was selected instead of average pooling because it

17

helps maintain essential features like edges and corners, which are important for character

differentiation. Max pooling keeps strong features by choosing the highest value in each

window, improving recognition accuracy, while average pooling may weaken these important

details. Initially, structures with fewer layers were tried, followed by deeper networks to evaluate

their impact on performance. Tests showed that while deeper networks could achieve higher

accuracy, they had tendency to over fit. Less complex models, however, failed to achieve

satisfactory accuracy. The architectures that was tested are shown in Figure 3.7. After various

rounds of testing, the design that demonstrated the most ideal balance between generalization

and performance included 8 layers. This setup consistently delivered better outcomes in

important evaluation measures like accuracy, precision, and loss.

Figure 3.7 CNN tested architectures

A crucial tool for model optimization was TensorBoard, which provided visualizations of

accuracy and loss graphs across all architectures, enabling effective performance tracking and

comparison. TensorBoard was used to choose the most fitting architecture because it allowed for

real-time monitoring of accuracy, validation accuracy, and loss on a single graph. This

18

comprehensive view helped identify the best-performing models, detect overfitting early, and

guide hyperparameter tuning, ensuring optimal model performance and effective architecture

selection. Figure 3.8 presents graphs for multiple trained architectures, accuracy, loss, validation

accuracy, and validation loss, allowing for a comparative analysis of their performance.

Figure 3.8 Different Architecture Graphs

As a result of this tests, valid padding (no padding) was selected for the convolutional layer,

resulting in the filter being applied only where it completely overlapped with the input data.

Therefore, the resultant feature map is reduced in size compared to the input as no extra pixels

are included along the edges to preserve the original dimensions. Additionally, a stride of 1 was

selected, meaning the filter moves one pixel at a time across the input, ensuring detailed feature

extraction while still contributing to the reduced output size. In first convolution layer the kernel

size was set to 5×5, in two other layers kernel size was reduced to 3×3. Max pooling was chosen

with a stride of 2. This implies that during the pooling operation, the maximum value was chosen

within every 2×2 section of the input, and the filter shifted by two pixels at a time.The

architecture of CNN that was chosen is presented in Figure 3.9

19

Figure 3.9 CNN Architecture

3.5 Training Process of the CNN

The image data is presented to the network and passed through the network layers. The first step

in a CNN is to detect and investigate the unique features and structures of the objects to be

differentiated. Filter matrices are used for this. Once a neural network has been modeled, these

filter matrices are initially still undetermined and the network at this stage is still unable to detect

patterns and objects. The networks are trained once during development and testing. After that,

they are ready for use and the parameters no longer need to be adjusted.

Backward propagation is an algorithm used in CNN straining. It is responsible for updating the

network‟s weights and biases in order to minimize the error in predictions.

First step in CNN training is forward propagation, which starts with image applied into the

network, then the layers computation is execute in sequential way in the same manner that was

explained in the section of the report, then the output is generated by the output layer, which is

typically a vector of logits representing class scores for classification tasks.

After that the loss is calculated by the loss function, which measures the difference between the

predicted output and the true labels. Loss functions for classification tasks include cross-entropy

loss, the expression is shown in Equation 3.5, theyi is the true label, and 𝑦𝑖 is the predicted

probability for class i.

 𝐿𝑜𝑠𝑠 = − 𝑦𝑖

𝑖

log 𝑦𝑖 (3.5)

The next step is the backward propagation, that goal is to compute the gradient of the loss with

respect to each parameter in the network. This is achieved using the chain rule of calculus to

20

propagate the error backward through the network. As the name indicate it is propagating the

error backward from the output layer to the input layer.

At output layerthe gradient of the loss is computed with respect to the input to the softmax layer

which is implemented in Equation 3.6. For 𝛿(𝐿) being the error at the output layer, 𝑦 the

predicted output, and y the true label.

 𝛿(𝐿) = 𝑦 − 𝑦 (3.6)

For the fully connected layer, gradients of the weights and biases are computed. The operations

are represented mathematically in Equations 3.7-3.9.

 ∇𝑊(𝑙) = 𝛿(𝑙+1). (𝑎 𝑙)𝑇 (3.7)

 ∇𝑏(𝑙) = 𝛿(𝑙+1) (3.8)

 𝛿(𝑙) = (𝑊(𝑙+1))𝑇 .𝛿(𝑙+1) ∙ 𝑓 ′ 𝑧𝑙 (3.9)

where ∇W(l) and ∇b(l) are the gradients of weights and biases, δ(l)is the error term for layer l, a(l) is

the activation from the previous layer, W(l+1) are the weights of the next layer, and f′(z
(l)

) is the

derivative of the activation function applied to the pre-activation z
(l)

.

Pooling layers transmit error signals by distributing the gradient to the max value locations (in

max pooling) or equally (in average pooling) due to their lack of weights.

For convolutional layers, compute the gradient is done with respect to the filters, as shown in

Equation 3.10, and 3.11.

 ∇𝑊𝑐𝑜𝑛𝑣
(𝑙)

= 𝛿𝑐𝑜𝑛𝑣
(𝑙+1)

∗ 𝑎𝑐𝑜𝑛𝑣
(𝑙)

 (3.10)

 𝛿𝑐𝑜𝑛𝑣
(𝑙)

= 𝛿𝑐𝑜𝑛𝑣
 𝑙+1 ∗ 𝑊𝑐𝑜𝑛𝑣

 𝑙+1 ∙ 𝑓 ′ 𝑧𝑐𝑜𝑛𝑣
 𝑙 (3.11)

where ∗ denotes the convolution operation, δ
(l)

 is the error term for the convolutional layer, a
(l)

 is

the activation map from the previous layer, and f′(z
(l)

) is the derivative of the activation function

applied to the convolutional layer's pre-activation map.

After calculating the gradients in the backpropagation process, the following step in training a

CNN is adjusting the network's parameters (weights and biases) to reduce the loss function. This

is accomplished using optimization algorithms. Two widely used optimization algorithms are

Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation (Adam). The computation

of gradiens for weights and bias is shown in Equation 2.8, and 2.9.

 𝑊 ∶= 𝑊 − 𝜂. 𝛻𝑊 (2.8)

21

 𝑏 ∶= 𝑏 − 𝜂. ∇𝑏 (2.9)

where η is the learning rate.

The optimization algorithm that was used in the project for CNN training is Adam optimizer. It

is an advanced optimization algorithm that combines the benefits of two other extensions of

SGD: AdaGrad and RMSProp. It computes adaptive learning rates for each parameter. Adam is

characterized by its adaptive learning rates and bias correction. It adjusts the learning rates for

each parameter based on the estimates of the first and second moments of the gradients, making

it particularly well-suited for problems with sparse gradients. Additionally, the bias correction

terms ensure that the estimates 𝑚 𝑡 and 𝑣 𝑡are unbiased, which is especially beneficial during the

initial steps of training. This combination allows Adam to provide faster and more stable

convergence compared to other optimization algorithms.

Mini-batch training and epochs are important ideas that enhance the efficiency and effectiveness

of training neural networks. During mini-batch training, both the forward and backward

propagation tasks are carried out for every mini-batch of data, resulting in quicker and more

frequent adjustments to the model's parameters compared to analyzing the entire dataset

simultaneously. This approach offers a trade-off between the computational speed of handling

numerous samples simultaneously and the strength of incorporating some diversity in the

training process, akin to stochastic training. Epochs are defined as the act of feeding the

complete training dataset into the network repeatedly. This step-by-step method guarantees that

the model gets multiple chances to adjust its weights and biases, gradually enhancing its

performance. Epochs contribute to the network's understanding of the training data by aiding in a

deeper grasp of patterns and features, resulting in a more precise and dependable model.

3.6 Software Implementation of CNN

The CNN was implemented in Python using the PyTorch library. A CharacterDataset class was

defined to initialize the dataset by reading image paths from the root directory, storing them, and

assigning labels to each class (corresponding to each folder). Each image from the dataset and its

corresponding label was retrieved by index, after which the images were loaded and

preprocessed. The dataset was then split into training and testing sets, with 80% of the data

allocated for training and 20% for testing. A DataLoaders were created for both the training and

testing sets, batching images in groups of 600 and shuffling the training data. Shuffling the data

is a beneficial technique in CNN training because if the data is fed into the network class by

class, the network is more likely to memorize the data rather than learn the underlying

patterns.CNN class was defined, that consist of three convolutional layers, subsequent ReLU

activations, and max-pooling layers. The first layer has 3 output channels, the second has 9, and

the third has 18. Following the convolutional layers, the output is flattened and processed

22

through three fully connected layers, decreasing the data to 100 units, then to 60 units, and

ultimately generating an output of 26 units, representing the 26 character classes. The

implementation of CNN in Python is shown in Figure 2.10.

Figure 3.10 CNN Implementation in Python

The model is then initialized and displayed in the terminal using the model.summary() function,

which provides a detailed overview of the model‟s architecture, including the layers, output

shapes, and the number of trainable parameters in each layer. The overview of the model as

generated by the Python is shown in Figure 3.11.

Figure 3.11 Model Summary in Python

23

The loss function was defined as CrossEntropyLoss, and the Adam optimizer was used for

training with a learning rate of 0.001. The training process runs for 100 epochs, during which the

model iterates over the training dataset, performing forward and backward passes to optimize the

model parameters. After each epoch, the loss and accuracy were calculated. The test function

evaluates the trained model on the test dataset, and when the desired accuracy was achieved, the

final trained model was saved to a file. The code also stored the model's parameters, which

consist of the weights and biases for each layer, in text files. These weights and biases are

essential for determining the behavior of the convolutional and fully connected layers, within the

network, the pooling layers do not have any parameters. During training, the network adjusts

weights to decrease loss, and biases help move the activation function to better fit the data. These

stored parameters were next utilized in FPGA implementation of CNN.

3.7 Hardware Implementation of CNN

NIOS II processor combined with a hardware accelerator was selected to execute the CNN in

hardware. This combination enables the CNN to run efficiently by transferring the

computationally heavy duties to the accelerator, with the NIOS processor managing control and

coordination. This arrangement combines the advantages of the processor and FPGA, allowing

for strong performance of CNN in hardware. Figure 3.12 provides comprehensive visual

representation of the architecture and components that forms the system.

Figure 3.12 System Model Overview

24

3.7.1 Pixel Conversion to Fixed-Point Format

In the hardware implementation, pixel values were changed to a specified fixed-point format,

Q8.24, to improve computational efficiency and accuracy in processing. Each pixel value was

represented in the Q8.24 format as a 32-bit number, with 8 bits dedicated to the integer number

part with the most significant bit for sign, and 24 bits dedicated to the fraction part. This

transformation enables accurate mathematical calculations on the pixel values without increasing

memory usage. By utilizing this structure, speedy and precise processing of pixel data was

guaranteed, particularly in settings where floating-point calculations are expensive or not

possible. The conversion of the pixels from floating to fixed point format is known as

quantization.

Also the parameters extracted from trained model (weights and biases) were converted into

fixed-point format, the conversion ensured that the parameters, initially in floating-point format,

could be accurately represented in the memory of the FPGA-based accelerator. The conversion

was done by Python script, the converted biases of first convolutional layer are represented in

Figure 3.13, from the architecture of CNN is clear that first layer have only 3 biases because it

has 3 output channels.

Figure 3.13 Quantization of CNN Biases

The algorithm used for Quantization was

1. Number scaling to fixed point representation, by multiply the floating point number by

2
F
, where F is the fractional length of the variable, in the design is 24.

2. Round the scaled value to the nearest integer to handle any fractional part.

3. Clamp the rounded value to fixed-point range (32-bit).

3.7.2 Modules of Hardware Accelerator

Separate module was created in SystemVerilog Hardware Description Language (HDL) for each

layer of the neural network for the CNN accelerator. This modular design method made it easier

to handle the intricate calculations needed for convolution, pooling, and fully connected layers.

25

The modular representation improved the design and implementation process, making debugging

and optimization of each layer easier. All individual models were connected by top-level

module, which managed the overall execution sequence, ensuring that data transitioned smoothly

from one layer to the next, and synchronized operations to maintain the integrity of the

computation. The top module have several inputs from the NIOS II processor and outputs that

are send to the processor, the block diagram of top module is represented in Figure 3.14.

Figure 3.14 Block Diagram of Top Module

In the implemented design, each convolutional layer is connected to two Read-Only Memory

(ROM) modules: one storing the weights and the other storing the biases. Each ROM is

implemented as a lookup table where the memory array serves as the table, and the address input

is used to select which data value to output. The only exception to this setup is the pooling

layers, which do not require any weights or biases. Additionally, the design includes three

Random Access Memory (RAM) modules. One RAM module is dedicated to storing the input

image pixels received from the NIOS processor, which consists of 784 pixels. The other two

RAM modules are reused throughout the network to store the output from each layer temporarily

before passing it on to the next layer. After the image data is processed through the network, the

final output prediction is generated. This prediction, represented as a number, is then sent back to

the NIOS processor for further use.

State machine is crucial in the design, for managing the flow of data and ensuring that the entire

neural network operates synchronously and efficiently. It guarantees that each step is executed in

the correct sequence, preventing any data collisions or mismanagement of resources. The state

machine that was implemented in the CNN_Top module is shown in Figure 3.15.

26

Figure 3.15 CNN_Top Module State Machine

3.7.2.1 Convolution Module

The convolution_layer modules for all three convolutional layers were implemented in a very

similar manner, with the main differences being the size and number of filters, as well as the

number of input and output channels. Each module features a state machine that manages the

loading of input data, weights, and biases from the memory modules. Additionally, the modules

perform the fixed-point multiplication and addition operations required for the convolution

process,each module also incorporates a ReLU activation function to introduce non-linearity into

the model.

The operation of each convolution_layer module is controlled by a state machine that follows a

precise sequence:

 The module begins processing only when it receives a start signal.

 During processing, the convolution results are passed through the ReLU activation

function, ensuring that only positive values are propagated forward.

 After completing the computations, the module sends the processed output data to the

memory unit.

 Once all outputs have been sent, the module then issues a finish signal to indicate that all

operations are complete.

27

This sequence ensures that the convolutional layers operate efficiently, with outputs being

properly stored after applying the ReLU function and before the completion of each process. The

state machine that control this flow is illustrated in Figure 3.16.

Figure 3.16 State Machine of Convolutional Layer Module

Where count_b tracks the number of channels being processed, count_s counts the number of

output pixels generated, count_w counts the number of weights within the kernel, and count_ d

tracks the range of input data being used for multiplication with the kernel.

Module kernel_mult is responsible for multiplication and addition of the kernel and input feature

map, and also for the application of ReLU activation function.

In the implemented design, the input image is processed by dividing it into smaller overlapping

regions, also known as frames, Each of these frames is then multiplied with the convolutional

kernel to produce a feature map. The input image is divided into frames using a sliding window

technique. This window moves across the image in small steps, equal to the stride length,

ensuring that each frame overlaps with its neighboring frames. The size of the window matches

the dimensions of the kernel.

3.7.2.2 Pooling Module

The pooling module is designed to reduce the spatial dimensions of the input while maintaining

the most important features. The module takes input data and processes it in 2×2 blocks, where

the maximum value of the four pixels is selected. The module's internal state machine manages

the flow of data through several states, including loading the input data, performing the max

pooling operation, and storing the resulting pooled value into memory. The state machine also

28

handles the address calculations for both input and output data locations. The module operates in

batches, iterating through each step and batch until all the data is processed, after that it

indicating the end of the task by making the ready signal active high.

3.7.2.3 Fully Connected Module

The design of hardware accelerator contain 3 fully connected modules, the first two implement

identical algorithm, the only difference between them is the number of input data and neurons

(output data). They are designed to implement a fully connected layer in a neural network, where

each neuron in the layer is connected to all neurons in the previous layer. This module processes

input data by multiplying it with corresponding weights and then accumulating the results for

each neuron. The computation includes adding a bias term and applying a ReLU activation

function to ensure non-linearity. The state machine controls the sequence of operations,

including loading data, weights, and biases, performing multiplication, accumulation, and

applying ReLU, which is very similar to the convolution module. The module outputs the final

computed value for each neuron and store it in memory.

Last fully connect module differs from the previous in several key ways, reflecting its role as the

final output layer of the CNN. This module does not include a ReLU activation function, as it

directly produces the final output values that will be used for prediction. The accumulator sums

the products of input data and weights across all connections for each neuron, with the bias

added before the final result is stored. Once the computations for all neurons are complete, the

output values are stored in memory, and the module signals that the CNN processing is finished.

This streamlined design is optimized for output generation, focusing on accurately producing the

final prediction results.

3.7.2.4 Max_Value Module

The Max_Value module is designed to identify the index of the maximum value within a set of

26 values, which is are the output values from last fully connected layer. The module

sequentially compares each input value to the current maximum value stored in the temp register.

The state machine controls the flow of operations through several states: it starts in the IDLE

state, then proceeds to CHECK_STEP, where it checks if all values have been compared. In the

COMPARE state, it updates the temp register and the max index if the current value is greater

than the stored maximum. The state machine is shown in Figure 3.17.

29

Figure 3.17 State Machine of Max_Value Module

Once all values have been processed, the module moves to the DONE state, at which point the

done signal is asserted, and the index of the maximum valueis output. This module is crucial for

determining the final prediction in a classification task, where the index of the highest value

corresponds to the predicted letter class.

3.7.2.5 Interface Module

All the modules been packaged as custom IP core to create a hardware accelerator. Additionally,

a top-level module has been implemented to interface between the hardware accelerator and the

NIOS II processor, managing the communication and data exchange between them. This top-

level module, which includes registers for data, address, write enable, and start signals, allows

the processor to send input data to the CNN, control the computation process, and retrieve the

final results. Specifically, the module includes logic for handling read and write operations from

the NIOS II processor, using the processor‟s address, read, and write signals to control the flow

of data. The CNN computation is initiated by the start signal, and upon completion, the output

prediction (inference) and a done signal are sent back to the processor. Data transaction between

processor(master) and accelerator(slave) adopts Advanced eXtensible Interface (AXI) protocol

[13]. AXI protocol ensures high speed data transformation from point to point. Figure 3.18

shows the interface between NIOS and custom IP.

30

Figure 3.18 Interface between NIOS II and Accelerator

This design ensures efficient and accurate execution of CNN operations, leveraging the

processing power of the custom IP cores while maintaining easy control via the NIOS II

processor.

Custom IP core

IP core is a specialized digital design block created to carry out specific tasks in an FPGA or an

ASIC. Custom IP cores are specially designed to fit the specific needs of a particular project or

application, as opposed to standard IP cores that are readily available for general purposes. These

cores are configurable to execute a variety of tasks. Developing a customized IP core consists of

defining its functionality, coding it in hardware description languages such as Verilog or VHDL,

and integrating it into the larger system with tools like Intel's Platform Designer. Tailored IP

cores allow for optimized, hardware solutions designed for specific applications, providing the

ability to boost performance, lower energy usage, and fully utilize the potential of the FPGA or

ASIC they are integrated into.

3.7.3 Integration of CNN Accelerator with NIOS II Processor

After completing the design and packaging of the CNN hardware accelerator as a custom IP

core, Platform Designer in the Quartus Prime software was utilized to incorporate this IP into a

complete system[14]. The custom accelerator was included with important elements like the

NIOS II processor, internal clock, UART for serial communication, a timer, on-chip RAM

memory, LCD controller, and performance counter. This fusion developed a fully operational

system that efficiently employs the hardware accelerator for performing high-performance CNN

computations under the supervision of the NIOS II processor. The architecture of NIOS II

processor is represented in Figure 3.19 [11].

31

Figure 3.19 NIOS II Processor Architecture

Utilizing Platform Designer made it easy to connect and configure components, guaranteeing

smooth data flow and system control. Figure 3.20 shows complete system with all connections,

base address for each IP, and the interrupts.

32

Figure 3.20 View of the System in Platform Designer

One of the key advantages of using Platform Designer is its ability to allow users to customize

on-chip RAM to meet specific project requirements. In this project, the flexibility of Platform

Designer enabled the configuration of on-chip RAM tailored to the needs of the CNN

accelerator. The RAM size was customized to 40KB, ensuring sufficient memory for efficient

data storage and processing while optimizing resource usage within the FPGA. This level of

33

customization is crucial for achieving a balanced design that meets both performance and

resource constraints.

Once the system design is successfully completed, the next important task is to perform the pin

assignment for the FPGA. This stage is essential to ensure proper and effective interaction

among hardware components after downloading the system into FPGA. The pins are assigned

due to the board manual [15].

After the design is downloaded into FPGA, the subsequent task involves coding the NIOS

processor using C++ language. This programming is essential for managing all connected

peripherals to the FPGA. The software guarantees that the FPGA and its accompanying

components cooperate seamlessly to achieve the desired goals.

The main functions of the NIOS II processor are to initializes the LCD, processes an image,

sends it to the CNN accelerator, waits for inference to complete, and displays the result on the

LCD. The program starts by initializing the LCD through a series of commands to set its mode

and ensure it's ready for operation. It then preprocesses an image by normalizing pixel values

and quantize them, which is required for the CNN accelerator. After resetting the CNN

accelerator to ensure it‟s in a known state, the program sends the image data to the accelerator. It

then starts the CNN processing and waits for the processing to complete by polling a status

register. Once the CNN has finished, it reads the inference result, converts it to a character, and

displays the result on the LCD. Additionally, performance counters are used to measure the

execution time of the CNN processing.

This chapter described a multi-stage approach to implementing and deploying a CNN using both

software and hardware components. Initially, the CNN was designed and trained in Python using

PyTorch framework. During training, the network learns from labeled data, adjusting its weights

and biases to optimize performance. This trained model was then tested on a handwritten letters

to evaluate its accuracy and generalization capabilities. Following this, the chapter transitions to

hardware implementation. The trained CNN's weights and biases were integrated into a hardware

design that includes a NIOS II processor and a custom FPGA-based CNN accelerator. The NIOS

processor is programmed to manage data transfer between the accelerator and system

components, while the accelerator performs CNN computations efficiently in hardware. By

combining Python-based model training with FPGA hardware acceleration, this approach

achieves a balance of flexibility, ease of development, and high-performance real-time inference.

34

Results and Discussion

This chapter demonstrate and examine the results of executing and utilizing the CNN on

software and hardware platforms. The results and discussion are organized to offer a complete

summary of the system's performance, encompassing the CNN model trained in Python, its

hardware acceleration on the FPGA, and its integration with the NIOS processor. It starts by

discussing the CNN's performance metrics and accuracy as assessed during testing, then evaluate

the operational efficiency of the hardware accelerator. The conversation will focus on important

discoveries, comparing software-based and hardware-accelerated implementations, and

investigating the impact of these results on practical applications.

4.1Python Implementation and Results

The designed CNN was implemented in Python using the Visual Studio Code platform. After

normalizing the dataset and splitting it into training and testing sets, the model was trained and

evaluated. The highest level of accuracy was reached by making several changes to the CNN

structure and adjusting different training parameters, such as the number of epochs, type of

optimizer, and learning rate. Making iterative changes was crucial to improve the model's

performance and reach maximum accuracy. Figure 4.1 show the accuracy that was achieved for

training with Adam analyzer, with 100 epochs, and learning rate equal to 0.001.

Figure 4.1 CNN Accuracy during training

Table 4.1 show the finale results of CNN training after 100 epochs. The closeness of accuracy on

the training data and the validation data suggests that the model is not overfitting to the training

set. It indicate that it is likely to perform well on truly unseen data. Also the small training loss

means that the model is effectively learning from the training data and making accurate

predictions on it. Small validation loss means that the model is also performing well on data it

hasn‟t seen during training.

35

Table 4.1 Results of CNN training

Accuracy 97.89%

Validation Accuracy 96.83%

Loss 0.0477

Validation Loss 0.0587

4.1.1Tensorflow and Keras Libraries

TensorFlow is an open-source machine learning framework developed by Google. It provides a

comprehensive ecosystem for building and deploying machine learning models, particularly deep

learning models. TensorFlow supports a variety of neural network architectures and algorithms,

making it versatile for tasks such as image recognition, natural language processing, and more. It

offers flexibility and scalability, with capabilities for both research and production environments.

Keras is a high-level neural networks Application Programming Interface (API) that runs on top

of TensorFlow. It provides an intuitive and user-friendly interface for defining neural network

architectures, training models, and evaluating performance.

TensorFlow and Keras were used to enhance the model evaluation and visualization processes,

by create the confusion matrices, and graphs including loss curves and accuracy plots. The crated

confusion matrices is shown in Figure 4.2.

Figure 4.2 Confusion Matrices

36

Confusion matrices were instrumental in identifying areas where the model was making errors

and guiding improvements. The confusion matrix for the final design, shown in Figure 3.2,

revealed that the letter "D" was most frequently confused with the letter "O." Despite this, "D"

was correctly predicted 94.68% of the time. On the other hand, the letter "O" was often confused

with the letter "Q," but incorrect predictions were relatively infrequent.

In Figure 4.3 the loss and accuracy graphs are shown, accuracy graph show that both training and

validation accuracy reach around 97% and stabilize after 20 epochs, indicating good

generalization without overfitting. The loss curves decrease sharply early on, with training loss

continuing to slightly decline while validation loss stabilizes, which indicate that the model is

well-trained.

Figure 4.3 Accuracy and Loss Graphs

Another important factor in CNN training is the quality of the dataset. For effective training, a

well-balanced dataset is crucial, meaning each class should have an equal number of samples.

This balance ensures that the model doesn't become biased toward any particular class. The idea

of implementing a CNN to recognize all characters (numbers, uppercase, and lowercase letters)

was abandoned because the classes in EMNIST dataset were not balanced, leading to

significantly lower accuracy. Additionally, the dataset should be sufficiently large to provide the

model with enough examples to learn meaningful patterns and generalize well to new data.

4.1.2CNN Testing in Python

After successfully training the model to achieve satisfactory accuracy, it was tested on some

handwritten letters. These letters were created using the Paint application and then imported into

Visual Studio Code for testing by the CNN. Figure 4.4 illustrates the model's prediction for the

letter "X". The code also provides the execution time and the CPU time for the prediction, which

latter on is compared with the hardware accelerator timing.

37

Figure 4.4 CNN Testing in Python

Several letters with several types of handwriting were tested and the CNN shows a very good

performance.

4.2Hardware Accelerator Model Simulation

The hardware accelerator was written in SystemVerilog and simulated using ModelSim platform,

which is a simulation tool used for verifying HDL designs, such as VHDL, Verilog, and

SystemVerilog. It provides a powerful environment for debugging and validating digital circuits

by allowing users to simulate and analyze waveforms, ensuring the correct functionality of

designs before implementation.

The CNN accelerator model was extensively tested through simulation to ensure its

functionality. During the testing, each layer of the CNN was individually verified to confirm it

operates correctly. Figure 4.5 shows how the computation process begins when the start signal is

asserted (active high). When the start signal is asserted, at the first positive edge of the signal, the

system transitions from the IDLE state to the CONV1 state. This transition indicates that the

computation for the first convolutional layer is starting.

Figure 4.6 shows the final stages of the computation. Once all layers have completed their

operations, the system transitions from the INFERENCE state to the DONE state. At this point,

the done signal is set high, indicating that the CNN has finished processing and the prediction

result is now available.

Also the simulation shows that the prediction was correct, the image that was entered to the CNN

accelerator was containing letter „E‟, and the prediction was „00100‟ which represents ‟E‟.

38

Figure 4.5 Simulation Waveforms of Convolution Start

Figure 4.6 Simulation Waveforms of Prediction Output

39

Table 4.1 presents the output binary numbers and their corresponding letters, illustrating the

mapping between the binary outputs of the CNN and the assigned letter labels.

Table 4.1 Mapping of Output Binary Numbers to Assigned Letters

Binary output Assigned letter

00000 A

00001 B

00010 C

00011 D

00100 E

00101 F

00110 G

00111 H

01000 I

01001 J

01010 K

01011 L

01100 M

01101 N

01110 O

01111 P

10000 Q

10001 R

10010 S

10011 T

10100 U

10101 V

10110 W

10111 X

11000 Y

11001 Z

The simulation waveforms clearly depict the amount of time each layer takes for computation, as

illustrated in Figures 4.7, 4.8, 4.9. The convolution layers and the first fully connected layer were

the most time-consuming, the other two fully connected layers were decreasing in time because

the number of neurons was less. The pooling layers were comparatively less demanding in terms

of computation time.

40

Figure 4.7 Simulation Waveforms of CONV1 to S1 transition

Figure 4.8 Simulation Waveforms of state transitions

41

Figure 4.9 Simulation Waveforms of layers state transitions

4.3 Register Transfer Level

After simulating the CNN accelerator in ModelSim, the design was compiled in Quartus Prime

platform, and the RTL was generated. RTL was used to describe the circuit's structure and

behavior at a level that can be synthesized into hardware. Figure 4.10 illustrates the complete

system, including the NIOS processor, memory, CNN accelerator, and other associated

components.

42

Figure 4.10 RTL of Complete System

43

4.4 Hardware Implementation of CNN and Results

After the system composed of NIOS processor and hardware accelerator was successfully

instantiated, simulated and verified. It was implemented and tested using Cyclone IV

GX4CX1550 FPGA evaluation platform, on the Intel (Altera previously) DE2i-150 board

[13].Figure 4.11 illustrates the board, that contains many futures, one of them is LCD that also

was used in the project.

Figure 4.11 DE2i-150 Board

4.4.1 CNN Prediction Results

The CNN was tested on a set of 100 images of handwritten uppercase letters. The tests showed

that 97 out of 100 images were correctly predicted, resulting in an accuracy of 97%. This

accuracy is very similar to that of the software implementation, with the small difference likely

due to the fixed-point representation of data. Figure 4.12 illustrates the CNN's prediction for the

letter „E,‟ which matches the prediction made by the software CNN.

44

Figure 4.12 Prediction of the CNN

Also report on performance counters is given, displaying the time taken and number of clock

cycles used in the process. The hardware accelerator accounted for 26.9% of the total execution

time, taking about 0.00444 seconds or 2,220,401 clock cycles, as shown in the report. The LCD

display of prediction is shown in Figure 4.13.

Figure 4.13 CNN Recognition Display on LCD

4.5 Timing Performance

The implemented design is working under 50 MHz frequency. It takes 825669 clock cycles, and

0.0165134 seconds to deal with one image, while the hardware accelerator only without dealing

45

with LCD display takes only 222040 clock cycles, and 0.00444 seconds. The speed-up was

calculated, and Equation 4.1 shows the formula that was used.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒)
 (4.1)

Compared with the software implemented CNN, which takes 0.8125 seconds to deal with same

image, FPGA implementation shows an advantage in higher performance. It has a 115x speed-up

than CPU.

4.6Power Consumption

Power play power analyzer used by Intel-FPGA Quartus Prime software tool. The power

analyzer used to measure the thermal power dissipation for the model, t he power consumption in

the design is 137.42 mW. The power consumption of different part is shown in Figure 4.14.

Figure 4.14 Power Consumption of System

The CNN was developed for use on both a software platform and an FPGA, with the FPGA

running on the Cyclone IV GX FPGA board. The FPGA design on the board was able to meet all

resource and timing constraints. The CNN on the FPGA showed much better performance than

the software implementation, achieving faster processing speeds and shorter inference times.

Moreover, the FPGA-powered CNN demonstrated reduced power usage, rendering it better

suited for energy-saving tasks. Utilizing FPGA led to increased power efficiency by utilizing

parallel processing for higher computational performance per watt. This not only boosted system

performance but also increased scalability and adaptability, highlighting the benefits of hardware

acceleration in deep learning applications.

46

Conclusion and Future Work

This project involved designing and implementing a specialized CNN for recognizing

handwritten characters. Python-based software CNN was implemented. The model underwent

successful training, obtaining accuracy of 97.89% and a loss of 0.0477. This performance is

notably strong, especially when compared to other implementations in the field, highlighting the

effectiveness and robustness of the model. The parameters of trained CNN were extracted and

saved for hardware implementation. The CNN was modified for faster processing on hardware

using an FPGA and NIOS processor combo, making use of SystemVerilog hardware description

language for the execution. This hardware version used fixed-point arithmetic for data

representation, for its efficiency and speed, as it requires fewer resources and performs faster

than floating-point arithmetic. This approach also allows for better control over precision,

making it ideal for resource-constrained environments like FPGAs. In particular, the system

based on FPGA achieved a processing rate of 0.0165 seconds for each inference, representing a

significant speedup of around 115 times compared to the software version.

Additionally, the FPGA system demonstrated efficiency in power consumption, with a

measurement of 137.42 mW. This project shows the benefits of using FPGA-based approaches

for deep learning tasks. The FPGA's noteworthy increase in speed and decrease in power usage,

in comparison to CPU-based software methods, highlight the potential of hardware acceleration

to improve performance and efficiency in real-world applications. Furthermore, this project

showcases the effective combination of a soft-core processor and dedicated hardware, a synergy

made possible by the FPGA. This combination exemplifies the flexibility and power of FPGA

technology in enhancing the performance of CNN applications.

Future work will focus on advancing to more complex CNN architectures and exploring their

application in real-time systems. This includes optimizing these advanced models for even faster

processing and real-time performance in practical scenarios. Potential areas for development

include tumor detection, where enhanced CNN models can improve early diagnosis through

medical imaging; autonomous vehicles, where sophisticated CNNs can advance object detection

and collision avoidance for safer navigation; real-time video surveillance, which can benefit

from rapid analysis for security threat detection; speech recognition, where optimized CNNs can

enhance the accuracy and responsiveness of virtual assistants; and medical image analysis, where

advanced CNNs can aid in more precise and timely diagnostics. These applications aim to

broaden the scope of FPGA-based deep learning systems, enhancing their utility in dynamic and

high-demand environments.

47

References

[1]Zhang, C., et al. (2015) Optimizing FPGA-Based Accelerator Design for Deep Convolutional

Neural Networks. Proceedings of the 2015 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, New York, NY, USA, February 2015, 161-170.

[2] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma

Vrudhula, Jae-sun Seo, and Yu Cao. 2016. Throughput-Optimized OpenCL-based FPGA

Accelerator for Large-Scale Convolutional Neural Networks. In Proceedings of the 2016

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA '16).

Association for Computing Machinery, New York, NY, USA, 16–25.

[3] Xiao, R., Shi, J., & Zhang, C. (2020). FPGA Implementation of CNN for Handwritten Digit

Recognition. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation

Control Conference (ITNEC), 1, 1128-1133.

[4] P. Wang, J. Song, Y. Peng and G. Liu, "Binarized Neural Network Based On FPGA To

Realize Handwritten Digit Recognition," 2020 IEEE International Conference on Information

Technology,Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 2020, pp. 1204-

1207.

[5] Siyu Zhu, Hu Huang, Zhihong Hu, Qian Tian, "Design of handwritten digit recognition

system based on FPGA," Proc. SPIE 11848, International Conference on Signal Image

Processing and Communication (ICSIPC 2021), 1184812 (1 June 2021).

[6] Yu, Ke, Minguk Kim, and Jun Rim Choi. 2023. "Memory-Tree Based Design of Optical

Character Recognition in FPGA" Electronics 12, no. 3: 754.

[7] L. A. de Oliveira Junior and E. Barros, "An FPGA-based Hardware Accelerator for Scene

Text Character Recognition," 2018 IFIP/IEEE International Conference on Very Large Scale

Integration (VLSI-SoC), Verona, Italy, 2018, pp. 125-130, doi: 10.1109/VLSI-

SoC.2018.8644776.

[8] Chen Wu, Mingyu Wang, Xinyuan Chu, Kun Wang, and Lei He. 2021. Low-precision

Floating-point Arithmetic for High-performance FPGA-based CNN Acceleration. ACM Trans.

Reconfigurable Technol. Syst. 15, 1, Article 6 (March 2022).

[9] Jiang, T., Xing, L., Yu, J. et al. A hardware-friendly logarithmic quantization method for

CNNs and FPGA implementation. J Real-Time Image Proc 21, 108 (2024).

[10] Yanamala RMR, Pullakandam M. Empowering edge devices: FPGA-based 16-bit fixed-

point accelerator with SVD for CNN on 32-bit memory-limited systems. Int J Circ Theor

Appl. 2024; 1-28.

48

[11]Processor Architecture Intel. Available at:

https://www.intel.com/content/www/us/en/docs/programmable/683836/current/processor-

architecture.html.

[12] The EMNIST dataset (2024) NIST. Available at: https://www.nist.gov/itl/products-and-

services/emnist-dataset.

[13] Zhe Li, Xiaoyu Wang, Xutao Lv, and Tianbao Yang. Sep-nets: Small and effective pattern

networks. CoRR, abs/1706.03912, 2017.

[14] Chu, P.P. (2012) Embedded SoPC design with NIOS II processor and Verilog examples.

Hoboken, N.J: Wiley.

[15] Altera. DE2i-150 FPGA System User Manual.

[16] Solai, P. (2020, June 22). How does Backpropagation work in a CNN? | Medium. Medium.

https://pavisj.medium.com/convolutions-and-backpropagations-46026a8f5d2c

[17] Nguyen, S. (2021, December 13). A gentle explanation of Backpropagation in

Convolutional Neural Network (CNN). Medium. https://medium.com/@ngocson2vn/a-gentle

explanation-of-backpropagation-in-convolutional-neural-network-cnn-1a70abff508b

[18] Linmoody. (2014, September 15). How to Use Mathematical Equations in Your Thesis

Current Grad Students. Current Grad Students. https://gradstudents.carleton.ca/2014/use

mathematicalequations-thesis/

https://gradstudents.carleton.ca/2014/use

49

Appendix A

The Source Code of CNN_ Top Module

50

51

52

53

54

55

56

Appendix B

The Source Code of Weight ROM

57

58

Appendix C

Pin Assignment of the System

59

