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Abstract 
This project presents the design and implementation of a custom instruction for the butterfly 
operation within the Decimation-In-Time (DIT) Fast Fourier Transform (FFT) algorithm, utilizing 
the NIOS II processor in an FPGA-based environment. The motivation behind this work stems 
from the computational intensity of FFT algorithms, which are pivotal in various digital signal 
processing (DSP) applications. Traditional software implementations on general-purpose 
processors often fall short in terms of speed. By leveraging the reconfigurability of FPGAs and the 
flexibility of NIOS II soft core processors, the proposed solution offering a hybrid approach that 
combines software and hardware optimization. This method involves designing a custom 
instruction specifically for the butterfly operation, a critical component of the FFT algorithm, to 
accelerate the computation. Compare the performance of a non-custom implementation with 
the hybrid approach that utilizes the custom instruction. Experimental results demonstrate a 
significant reduction in execution time when the custom instruction is employed. The conclusions 
drawn from this research work highlights the benefits of integrating hardware accelerators in 
FPGA-based systems to achieve substantial performance improvements in signal processing 
applications. This work showcases the potential of hardware-software co-design in optimizing 
computationally intensive algorithms, ultimately contributing to more efficient and faster 
processing solutions. Performance evaluations are conducted to compare the execution time of 
the custom instruction implementation against a conventional nun-custom approach. The results 
indicate a significant improvement in execution speed, since with the custom instruction 
achieving a reduction in execution time by approximately 57%, the custom instruction has 0.142s 
comparing with 0.333s in non-custom instruction. 

Keywords: Custom instruction, Fast Fourier Transform, NIOS II processor, FPGA, digital signal 
processing, hardware acceleration, butterfly operation, performance optimization. 
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1.Introduction 
The Fast Fourier Transform (FFT) is a fundamental algorithm in digital signal processing (DSP) that 
plays a crucial role in analyzing the frequency components of signals. Its applications span a wide 
range of fields, including telecommunications, audio processing, image analysis, and biomedical 
engineering. By transforming a sequence of complex numbers from the time domain to the 
frequency domain, the FFT enables efficient signal analysis and manipulation, which is essential 
for modern technological advancements. However, the computational complexity associated 
with FFT, particularly when dealing with large datasets, presents significant challenges that can 
hinder real-time processing capabilities. 

The primary problem related to FFT computations lies in their inherent computational intensity. 
As the size of the input data increases, the time required for computation can grow exponentially, 
leading to performance bottlenecks that can severely impact the effectiveness of real-time 
applications. For instance, in telecommunications, delays in signal processing can degrade 
performance and user experience, while in medical imaging, slow processing times can hinder 
timely diagnosis and treatment. These inefficiencies underscore the critical need for optimized 
solutions that can enhance the performance of FFT computations, particularly in scenarios where 
rapid analysis and response are paramount. 

Addressing these challenges is of utmost importance, as optimizing FFT computations not only 
improves the performance of existing systems but also opens the door to new applications and 
innovations in digital signal processing. Recent advancements in hardware architectures, 
particularly the use of custom instructions in programmable processors like the Nios II, present 
promising avenues for tackling these issues. By leveraging the capabilities of custom instructions, 
developers can accelerate FFT computations, significantly improving performance and resource 
utilization. This project aims to explore and implement various strategies to optimize FFT 
computations, ultimately enhancing the efficiency and effectiveness of digital signal processing 
in real-time applications. 

 

1.2. Literature Review 
Recent literature has proposed several solutions to enhance the performance of the Fast Fourier 
Transform (FFT) algorithm, focusing on various techniques that leverage both hardware and 
software optimizations. One prominent approach is hardware acceleration with FPGAs. Field-
Programmable Gate Arrays (FPGAs) have gained popularity for implementing FFT algorithms due 
to their inherent parallel processing capabilities. Research has demonstrated that FPGAs can 
achieve significant speedups compared to traditional software implementations running on 
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general-purpose processors. For instance, studies indicate that the parallel architecture of FPGAs 
allows for simultaneous execution of multiple butterfly operations, leading to substantial 
reductions in computation time. Customizing the hardware for specific applications enables 
optimizations such as pipelining and resource sharing, which further enhance performance. 
Additionally, FPGA implementations can be tailored to specific FFT sizes, optimizing resource 
usage and minimizing latency, making them particularly suitable for real-time applications like 
telecommunications and audio processing. Notable examples include Kumar's work, which 
showcased a 4x speedup in FFT computation on an FPGA compared to a software implementation 
on a CPU [1]. 

Another effective method for optimizing FFT computations is custom instruction design. The 
integration of custom instructions into processors like the NIOS II allows developers to create 
specific operations tailored for the FFT algorithm, particularly for the butterfly computations 
central to the Decimation-In-Time FFT. By designing custom instructions that execute these 
butterfly operations directly in hardware, developers can significantly reduce the number of clock 
cycles required for FFT calculations, which is critical for applications requiring real-time 
processing. Research by Zhang demonstrated a 30% reduction in execution time for FFT 
computations on the NIOS II processor through the use of custom instructions [2]. Moreover, 
custom instructions can lead to a decrease in code size, as frequently used operations can be 
encapsulated within a single instruction, which is particularly beneficial in embedded systems 
with limited memory resources. 

Optimized memory access patterns have also been shown to significantly improve the 
performance of FFT implementations. Studies indicate that inefficient memory access can lead 
to increased latency and reduced throughput, especially in large FFT computations. Techniques 
such as pipelining, cache optimization, and data locality management have been proposed to 
enhance memory access efficiency. For example, pipelining allows for overlapping computation 
and data transfer, minimizing idle time and maximizing resource utilization. Liu's research 
demonstrated that optimizing memory access patterns resulted in a 25% performance 
improvement in FFT implementations [3]. Efficient data flow management, such as using block-
based processing or tiling techniques, can help reduce cache misses and improve overall memory 
bandwidth utilization, which is crucial for handling large datasets efficiently. 

 

Lastly, hybrid approaches that combine software and hardware techniques have gained traction 
as a means to optimize FFT computations. These approaches leverage the flexibility of software 
while utilizing the speed of hardware acceleration, resulting in balanced performance 
improvements. Some researchers propose using software to handle control logic and data 
management while offloading computationally intensive tasks, such as butterfly operations, to 
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custom hardware or FPGAs. This separation of concerns allows for more efficient resource use 
and can lead to significant performance gains. Studies, such as those conducted by Wang, have 
demonstrated that hybrid implementations can achieve up to a 40% improvement in execution 
time compared to pure software implementations [4]. By combining the strengths of both 
software and hardware, hybrid approaches can adapt to varying application requirements and 
provide a more versatile solution for FFT computations.  

While these solutions show promise, they often focus on specific aspects of FFT optimization 
without comprehensively integrating the benefits of custom instruction design. 

 

1.3. Contribution of Proposed Solution 
The contributions of this proposed solution are as follows: 

1. Performance Enhancement: By offloading the butterfly operation to a custom instruction 
executed in hardware, we can significantly reduce execution time compared to traditional 
software implementations. 

2. Resource Optimization: The custom instruction is designed to utilize FPGA resources 
efficiently, allowing for more complex operations to be performed within the same 
hardware constraints. 

3. Flexibility and Scalability: The NIOS II processor's configurability allows for easy 
adaptation of the custom instruction to various DSP applications, making it a versatile 
solution for future developments. 

4. Real-Time Processing Capability: The hardware acceleration provided by the custom 
instruction enables real-time processing of signals, which is essential for applications in 
various fields, including telecommunications, audio and video processing, medical 
imaging, and control systems. 

 

1.4. Overview of Subsequent Chapters 
The subsequent chapters of this report will be organized as follows: 

Chapter 2: Experiment Environments: This chapter represents the all hardware and 
development environments that used in the project.    

Chapter 3: Methodology: This chapter represents detail the methodologies employed in 
the project, including the design of custom instructions, system architecture definition, 
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and software development processes. It will outline the tools and techniques used to 
achieve the project objectives. 

Chapter 4: Results and Discussions: This chapter presents the implementation of the FFT 
algorithm on the NIOS II processor, including the integration of custom instructions. It 
showcases the results of the performance evaluation, highlighting the improvements 
achieved.  

Chapter 5: Conclusion and Future Work: The final chapter will summarize the key findings 
of the research, reiterating the importance of optimizing FFT computations. It will also 
propose directions for future work, suggesting areas where further enhancements and 
research could be pursued. 
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2.Experiment Environment 
2.1. Hardware Environment 
In this project, various hardware environments are utilized to optimize the implementation and 
performance of the Fast Fourier Transform (FFT) algorithm. The following sections detail the key 
hardware components and environments that contribute to the overall functionality and 
efficiency of the project. 

2.1.1. DE2i-150 board  
The DE2i-150 board is an advanced educational and development platform designed by Intel 
(formerly Altera) for prototyping and experimentation with digital designs. It features a range of 
components and interfaces that make it suitable for various applications, including digital signal 
processing, embedded systems, and hardware design education. The DE2i-150 board as shown 
in Figure 2-1 is particularly notable for its integration of a Field-Programmable Gate Arrays 
(FPGA), peripherals, and user interface components, providing a comprehensive environment for 
developing and testing custom applications [5]. 

The Architecture of the DE2i-150 Board: 

 

Figure 2-1The DE2i-150 board 
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1. FPGA Component: At the heart of the DE2i-150 board is the Altera Cyclone IV FPGA. This 
FPGA is a low-cost, low-power device that offers a balance of performance and resource 
availability. The Cyclone IV FPGA provides a significant number of logic elements, memory 
blocks, and digital signal processing (DSP) capabilities, making it suitable for a wide range 
of applications. 

2. Memory: The board includes various types of memory, such as SDRAM and Flash 
memory. The SDRAM is used for temporary data storage during processing, while 
the Flash memory provides non-volatile storage for configuration and user data. 

3. I/O Interfaces: The DE2i-150 board is equipped with multiple input/output interfaces, 
including: 

• USB: For communication with external devices and programming the 
FPGA. 

• HDMI: For video output, allowing for the display of graphical content. 

• VGA: For connecting to monitors and displaying output. 

• Audio Interfaces: For input and output of audio signals, facilitating 
multimedia applications. 

• GPIO: General-purpose input/output pins for interfacing with various 
sensors and actuators. 

4. User Interface Components: The board features several user interface components, 
including: 

• LEDs: For visual feedback and status indicators. 

• Switches: For user input and configuration. 

• Seven-Segment Displays: For displaying numerical values and status 
information. 

5. Expansion Connectors: The DE2i-150 board includes expansion connectors that allow for 
the integration of additional peripherals and modules. This feature enhances the board's 
versatility and enables users to customize their setups for specific applications. 

 

2.1.2. Field-Programmable Gate Arrays  
Field-Programmable Gate Arrays are integrated circuits that can be configured by the user after 
manufacturing, allowing for a high degree of flexibility in hardware design. FPGAs are widely used 



7 
 

in various applications, including digital signal processing, telecommunications, automotive 
systems, and embedded systems. Their programmability enables designers to implement custom 
digital circuits tailored to specific tasks, making them a powerful tool in modern electronics [6]. 

An FPGA has a regular structure of logic cells or modules and interlinks which is under the 
developers and designers complete control. The FPGA is built with mainly three major blocks 
such as Configurable Logic Block (CLB), I/O Blocks or Pads and Switch Matrix/ Interconnection 
Wires as shown in Figure 2-2. Each block will be discussed below in brief. 

• CLB: These are the basic cells of FPGA. It consists of one 8-bit function generator, two 16-
bit function generators, two registers (flip-flops or latches), and reprogrammable routing 
controls (multiplexers). The CLBs are applied to implement other designed function and 
macros. Each CLBs have inputs on each side which makes them flexile for the mapping 
and partitioning of logic. 

• I/O Pads or Blocks: The Input/Output pads are used for the outside peripherals to access 
the functions of FPGA and using the I/O pads it can also communicate with FPGA for 
different applications using different peripherals. 

• Switch Matrix/ Interconnection Wires: Switch Matrix is used in FPGA to connect the long 
and short interconnection wires together in flexible combination. It also contains the 
transistors to turn on/off connections between different lines.  

 

Figure 2-2FPGA block diagram 

FPGAs can be reprogrammed to implement different functions or algorithms, making them 
suitable for a wide range of applications. This flexibility allows for rapid prototyping and iterative 
design processes. 
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The architecture of FPGAs enables parallel processing of multiple tasks, which can significantly 
enhance performance for applications that require high-speed data processing, such as digital 
signal processing and real-time analysis. 

Designers can create custom hardware solutions tailored to specific requirements, optimizing 
performance and resource utilization. This customization is particularly advantageous in 
applications where off-the-shelf solutions may not meet performance criteria. 

FPGAs can reduce development costs by allowing for hardware changes through software 
updates rather than requiring new hardware designs. This is especially beneficial for low to 
medium volume production runs. 

The ability to quickly reconfigure FPGAs allows for faster development cycles. Designers can test 
and iterate on their designs without the delays associated with traditional hardware 
development. 

In projects involving digital signal processing, such as FFT implementations, FPGAs provide the 
necessary performance to handle real-time data processing. Their parallel processing capabilities 
allow for efficient handling of complex algorithms. The ability to implement custom logic tailored 
to the specific requirements of the project makes FPGAs ideal for optimizing performance. For 
instance, custom instructions can be added to accelerate FFT computations, enhancing overall 
efficiency. FPGAs can host soft processors like the Nios II, allowing for a combination of hardware 
and software processing. This integration enables the execution of complex algorithms while 
leveraging the flexibility of FPGA architecture. FPGAs can easily scale to accommodate different 
input sizes and complexities, making them suitable for applications where the size of the data 
may vary. This scalability is crucial in projects that require adaptability to changing requirements. 
Using FPGAs for prototyping allows developers to test their designs in real-world scenarios 
without the need for extensive hardware changes. This cost-effectiveness is particularly 
beneficial in research and development projects. 

 

2.1.3. NIOS II Processor  
The Nios II processor is a 32-bit RISC (Reduced Instruction Set Computing) soft processor core 
developed by Intel (formerly Altera) for implementation in Field-Programmable Gate Arrays 
(FPGAs). It is designed to be highly configurable, allowing developers to tailor the processor 
architecture to meet specific application requirements. The Nios II processor is particularly well-
suited for embedded systems and digital signal processing applications due to its flexibility, 
performance, and resource efficiency [7]. Nios II Processor Core Block Diagram shows in Figure 
2-3. 
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Figure 2-3 Nios II Processor Core Block Diagram 

 

The architecture of the Nios II processor is modular and customizable, which allows designers to 
optimize it for various tasks. Key components of the Nios II architecture include: 

1. Core Components: 

• Arithmetic Logic Unit (ALU): Executes arithmetic and logical operations. 

• Registers: A set of general-purpose registers that facilitate data storage and 
manipulation. 

• Instruction Fetch Unit: Responsible for fetching instructions from memory. 
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2. Configurability: 

• The Nios II processor can be configured with different data widths (16-bit or 32-
bit), memory interfaces, and peripheral interfaces, enabling designers to create a 
processor that fits their specific needs. 

• Custom instructions can be added to enhance performance for specific algorithms, 
such as the Fast Fourier Transform (FFT). 

3. Memory Architecture: 

• The processor supports various memory types, including SRAM, SDRAM, and 
ROM, allowing for flexible memory configurations. 

• It can be connected to local memory or external memory interfaces, depending 
on the application requirements. 

4. Pipeline Architecture: 

• The Nios II processor utilizes a pipelined architecture, which allows for overlapping 
instruction execution. This improves throughput and overall performance by 
enabling multiple instructions to be processed simultaneously. 

5. Bus Interfaces: 

• The processor can communicate with various peripherals and components 
through standard bus interfaces, such as Avalon and Wishbone, facilitating easy 
integration into larger systems. 

The Nios II Processor have the ability to configure the processor architecture allows developers 
to optimize it for specific applications, ensuring that the processor meets performance and 
resource requirements. As a soft processor, the Nios II can be implemented on FPGAs, allowing 
for efficient use of logic elements and memory resources. This is particularly advantageous in 
embedded systems where resource constraints are common. The Nios II processor can achieve 
high performance through its pipelined architecture and the ability to add custom instructions. 
This is especially beneficial for computationally intensive tasks such as digital signal processing. 
The Nios II processor can be easily adapted to a wide range of applications, from simple control 
tasks to complex signal processing algorithms. This flexibility makes it a popular choice in various 
industries, including telecommunications, automotive, and consumer electronics. Intel provides 
a comprehensive suite of development tools, including Quartus Prime and the Nios II Software 
Build Tools, which facilitate the design, simulation, and implementation of Nios II-based systems. 
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The reasons for Using Nios II in FFT Implementations: 

• Optimized Performance: The Nios II processor's ability to incorporate custom instructions 
allows for significant performance improvements in FFT computations. Custom 
instructions can be designed to accelerate specific operations within the FFT algorithm, 
reducing execution time and enhancing overall efficiency. 

• Real-Time Processing: The Nios II processor is well-suited for applications requiring real-
time processing, such as signal analysis and manipulation. The reduced latency achieved 
through custom instructions is crucial for applications in telecommunications and audio 
processing, where timely responses are essential. 

• Integration with FPGA: Implementing the FFT algorithm on the Nios II processor within 
an FPGA allows for parallel processing capabilities, which can further enhance 
performance. The flexibility of the FPGA enables designers to optimize the hardware for 
specific FFT sizes and configurations. 

• Scalability: The Nios II processor can easily scale to accommodate different FFT lengths 
and complexities, making it adaptable to various signal processing tasks. This scalability is 
important in applications where the size of the input data may vary. 

• Cost-Effectiveness: By using a soft processor like Nios II, developers can reduce costs 
associated with hardware development. The ability to configure and reconfigure the 
processor as needed allows for iterative design improvements without the need for 
additional hardware 

 

2.1.4. Custom Instructions  
One of standout features of Nios II is the ability to incorporate custom instructions, which allow 
developers to extend the standard instruction set architecture (ISA) to optimize performance for 
specific applications. Custom instructions enable the implementation of specialized operations 
directly in hardware, resulting in significant enhancements in execution speed and resource 
utilization [3]. 

 

The advantages of using custom instructions in the Nios II processor are manifold: 

• Performance Optimization: Custom instructions can dramatically reduce execution time 
for critical operations, enabling applications to meet real-time processing requirements, 
particularly in digital signal processing (DSP) and embedded systems. 
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• Resource Efficiency: By offloading frequently used operations to custom instructions, 
developers can optimize the use of FPGA resources, allowing for more efficient designs 
that accommodate additional functionality without exceeding resource limits. 

• Flexibility: The ability to define and modify custom instructions allows developers to 
adapt their designs to changing application requirements without needing to redesign the 
entire processor. 

• Reduced Code Size: Custom instructions can encapsulate complex operations, leading to 
smaller code sizes and improved overall system performance. 

The Figure 2-4 shows Hardware Block Diagram of a Nios II Custom Instruction [8]. 

 

Figure 2-4 Hardware Block Diagram of a Nios II Custom Instruction 

The custom logic blocks can be implemented using either one or a combination of the following 
four 

Options.  

1. Combinatorial Logic 
Combinatorial logic custom instruc�ons are designed to execute opera�ons that depend 
solely on the current inputs without any memory elements as shown in Figure 2-5 . These 
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instruc�ons allow for the implementa�on of complex logic func�ons directly in hardware, 
enabling rapid execu�on of tasks such as arithme�c opera�ons, data selec�on, and signal 
manipula�on. By u�lizing combinatorial logic, developers can op�mize performance for 
applica�ons requiring immediate response to input changes, making it par�cularly useful 
in digital signal processing and control systems. 

 

Figure 2-5 Combinatorial logic custom instructions block diagram 

 

2. Mul�-cycle Logic 
Mul�-cycle logic custom instruc�ons are tailored to perform opera�ons that require 
mul�ple clock cycles to complete. This approach allows for more complex computa�ons 
to be broken down into simpler steps, which can be executed sequen�ally. By using mul�-
cycle logic, developers can op�mize resource u�liza�on, as the same hardware can be 
reused across different cycles for various opera�ons. This is especially beneficial in 
scenarios where certain tasks are too complex to be executed in a single cycle, allowing 
for enhanced performance without the need for addi�onal resources. 

 

3. Parameteriza�on 
Parameteriza�on in the context of custom instruc�ons refers to the ability to define 
certain aspects of the instruc�on as adjustable parameters. This feature allows developers 
to create flexible and reusable instruc�on designs that can be tailored to specific 
applica�on requirements. By parameterizing custom instruc�ons, designers can easily 
adapt their implementa�ons to varying data sizes, opera�on types, or performance 
criteria without extensive redesign. This flexibility enhances the efficiency of the 
development process and allows for rapid adapta�on to changing project needs. 

 

4. User-defined Ports 
User-defined ports custom instruc�ons provide a mechanism for designers to specify 
custom input and output interfaces for their instruc�ons. This feature allows for tailored 
communica�on pathways between the processor and external components, enabling 
greater flexibility in how modules interact. By defining user-specific ports, developers can 
create modular and reusable instruc�on sets that meet the unique requirements of their 
applica�ons. This capability is par�cularly valuable in complex designs, where standard 
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interfaces may not suffice, allowing for op�mized integra�on with various hardware 
components. 
 

In this project, combinational custom instructions are of particular importance due to their 
ability to execute specific operations rapidly and efficiently. By implementing combinational 
custom instructions, we can significantly accelerate the execution of critical algorithms, such as 
the Fast Fourier Transform (FFT). This optimization is essential for meeting the real-time 
processing demands of the application, allowing for faster signal analysis and manipulation. 

The use of combinational custom instructions not only enhances performance but also improves 
resource utilization within the FPGA. By encapsulating complex operations into a single 
instruction, we can reduce the overall code size and streamline the processing workflow, 
ultimately leading to a more efficient and effective system design. 

These instructions are designed to execute tasks based solely on the current inputs, without 
relying on any previous states or memory elements. This characteristic enables immediate 
response to input changes, making combinatorial logic particularly effective for applications that 
require high-speed processing and real-time performance. 

The functionality of Combinatorial Logic Custom Instructions is: 

• Single-Cycle Execution: Combinatorial logic custom instructions are executed in a single 
clock cycle, which means that the output is available immediately after the inputs are 
applied. This rapid execution is essential for applications that demand low latency. 

• Direct Hardware Implementation: By implementing logic functions directly in hardware, 
combinatorial logic custom instructions can perform complex operations such as 
arithmetic calculations, data selection, and bit manipulation efficiently. This direct 
implementation reduces the overhead associated with executing multiple standard 
instructions. 

• Flexibility in Design: Developers can define custom combinatorial logic instructions 
tailored to specific application requirements. This flexibility allows for the optimization of 
critical algorithms, enhancing overall system performance. 

The advantages of using Combinatorial Logic Custom Instructions is: 

• Performance Improvement: The primary advantage of combinatorial logic custom 
instructions is the significant reduction in execution time for critical operations. By 
executing tasks in a single cycle, these instructions can enhance the responsiveness of 
applications, particularly in real-time processing scenarios such as digital signal processing 
(DSP) and control systems. 
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• Resource Efficiency: Combinatorial logic custom instructions allow for efficient use of 
FPGA resources. By consolidating multiple operations into a single instruction, developers 
can minimize the number of logic elements required, leading to a more compact and 
efficient design. 

• Reduced Code Complexity: By encapsulating complex logic operations within a single 
custom instruction, developers can simplify their code. This reduction in code complexity 
not only makes the design easier to understand and maintain but also minimizes the 
potential for errors during implementation. 

• Enhanced Throughput: The ability to execute multiple operations simultaneously through 
combinatorial logic can lead to increased throughput in applications that require high 
data rates. This is particularly beneficial in scenarios such as video processing or high-
speed data acquisition. 

• Lower Power Consumption: By reducing the number of clock cycles needed to perform 
operations, combinatorial logic custom instructions can also lead to lower power 
consumption. This is especially important in embedded systems where power efficiency 
is a critical consideration. 

In the context of this project, combinatorial logic custom instructions are utilized to optimize the 
performance of the Fast Fourier Transform (FFT) algorithm. The FFT is a computationally 
intensive operation commonly used in signal processing applications, and its efficiency is 
paramount for real-time analysis. 

By implementing combinatorial logic custom instructions specifically designed for the FFT, we 
can achieve the following: 

• Accelerated Processing: The custom instructions allow for rapid execution of FFT 
computations, significantly reducing the time required for signal analysis and 
manipulation. 

• Improved Resource Utilization: The efficient design of combinatorial logic custom 
instructions ensures that FPGA resources are utilized optimally, allowing for additional 
functionalities to be integrated without exceeding resource limits. 

• Real-Time Performance: The immediate response capabilities of combinatorial logic 
custom instructions are essential for meeting the real-time processing demands of the 
project, ensuring timely analysis and response to input signals. 

Combinatorial logic custom instructions are a powerful tool for optimizing the performance of 
the Nios II processor in applications requiring high-speed processing and low latency. Their ability 
to execute operations in a single cycle, coupled with advantages such as resource efficiency and 
reduced code complexity, makes them particularly valuable in this project. By leveraging 
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combinatorial logic custom instructions, we can enhance the efficiency of the FFT algorithm, 
ultimately leading to improved performance in real-time signal processing applications 

 

2.1.5. On-Chip Memory 
On-chip memory, also known as embedded memory, refers to memory that is integrated directly 
within the silicon chip of the processor or FPGA. This type of memory is typically used for high-
speed data storage and access, as it is located close to the processing units, minimizing latency 
[9]. On-chip memory can take various forms, including: 

1. Registers: Small storage locations within the processor that hold data temporarily for 
immediate processing. 

2. Cache Memory: A small amount of high-speed memory that stores frequently accessed 
data and instructions, allowing for faster retrieval compared to accessing main memory. 

3. Block RAM (BRAM): Dedicated memory blocks available in FPGAs that can be configured 
for various data widths and depths, providing flexibility for different applications. 

On-chip memory offers significantly faster access times compared to external memory solutions, 
making it ideal for applications requiring quick data retrieval and processing. 

The proximity of on-chip memory to the processing units reduces the time it takes to access data, 
which is critical for real-time applications. 

Accessing on-chip memory consumes less power than accessing off-chip memory, which is 
essential in battery-operated and energy-sensitive applications. 

2.1.6. SDRAM Memory 
SDRAM (Synchronous Dynamic Random Access Memory) is a type of external memory that 
synchronizes its operation with the system clock. SDRAM is widely used in computer systems and 
embedded applications due to its ability to provide high-speed data access and large storage 
capacity. SDRAM operates by storing data in capacitors, which need to be refreshed periodically 
to maintain the stored information [10]. 

SDRAM can provide larger storage capacities compared to on-chip memory, making it suitable 
for applications that require significant amounts of data storage. SDRAM is generally less 
expensive per bit compared to on-chip memory, making it a cost-effective solution for 
applications that require large memory sizes. SDRAM can be used for various applications, from 
general-purpose computing to specialized embedded systems, due to its adaptability and 
scalability. 
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In the context of this project, both on-chip memory and SDRAM memory are utilized to leverage 
their respective advantages: 

1. On-Chip Memory: 

• On-chip memory is used for storing critical data and instructions that require fast 
access, such as intermediate results of computations and frequently used 
variables. The low latency and high speed of on-chip memory are essential for 
ensuring that the processing tasks, such as those involved in the Fast Fourier 
Transform (FFT) algorithm, are executed efficiently and in real-time. 

2. SDRAM Memory: 

• SDRAM is employed for storing larger datasets and buffers that not fit into on-chip 
memory. For instance, in applications involving signal processing, SDRAM can hold 
extensive input data or processed results that need to be accessed less frequently 
but require substantial storage capacity. The ability to refresh and manage larger 
volumes of data makes SDRAM a suitable choice for handling the demands of 
complex algorithms and larger datasets. 

In summary, the use of both on-chip memory and SDRAM memory in this project allows for an 
optimal balance between speed, capacity, and efficiency. On-chip memory provides the high-
speed access necessary for real-time processing, while SDRAM offers the larger storage capacity 
needed for handling extensive datasets. Together, these memory types contribute to the overall 
performance and effectiveness of the system, enabling successful execution of the project's 
objectives. 

 

2.1.7. Phase-Locked Loop (PLL) 
A Phase-Locked Loop clock is a critical component in modern electronic systems, particularly in 
memory technologies. It is a control system that generates a clock signal that is synchronized 
with a reference clock signal, ensuring that the output clock maintains a consistent phase 
relationship with the input clock. PLLs are widely used in various applications, including data 
communication, signal processing, and memory systems, due to their ability to optimize 
performance, enhance synchronization, manage power efficiently, and improve reliability [8]. 

The primary function of a PLL clock is to generate a stable output clock signal that is phase-aligned 
with the reference clock. In memory systems, this synchronization is crucial for ensuring that data 
is read from and written to memory at the correct timing intervals. The PLL adjusts the output 
clock frequency to match the required operational frequency of the memory devices, such as 
SDRAM or DDR (Double Data Rate) memory. 
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PLLs can multiply the frequency of the input clock signal, allowing memory systems to operate at 
higher frequencies than the base system clock. This capability is essential for meeting the 
increasing performance demands of modern applications, where higher data rates are necessary 
for efficient memory operations. 

One of the significant advantages of using a PLL clock is its ability to reduce clock jitter, which can 
adversely affect the timing and reliability of data transfers. By providing a clean and stable clock 
signal, the PLL helps ensure that the memory operates reliably and efficiently, minimizing the risk 
of data corruption. 

PLLs can dynamically adjust the output clock frequency based on the operating conditions and 
requirements of the system. This adaptability is crucial in environments where power 
consumption and performance need to be balanced, allowing the memory to operate efficiently 
under varying conditions. 

Significance of PLL Clock in Memory Systems 

1. Performance Optimization: The PLL clock is vital for optimizing the performance of 
memory systems. By providing a high-frequency clock signal, the PLL enables faster data 
access and improved throughput. This is particularly important for applications requiring 
high-speed memory operations, such as video processing, gaming, and data-intensive 
computing. 

2. Synchronization: Synchronization of the memory devices with the system clock is critical 
for ensuring accurate data transfers. The PLL ensures that the memory operates in 
harmony with the rest of the system, preventing timing issues that could lead to data 
corruption or loss. This synchronization is especially important in multi-channel memory 
systems, where precise timing is essential for maintaining data integrity. 

3. Power Management: The ability of the PLL to adjust the clock frequency dynamically 
allows for better power management in memory systems. By reducing the clock 
frequency during periods of low activity, the system can conserve power, which is 
particularly important in battery-operated devices and energy-efficient applications. This 
feature helps extend battery life and reduce heat generation in electronic devices. 

4. Reliability: A stable and low-jitter clock signal is essential for the reliable operation of 
memory systems. The PLL's ability to minimize jitter contributes to the overall stability 
and reliability of the memory system, reducing the likelihood of errors during data 
transfers. This reliability is crucial in applications where data integrity is paramount, such 
as in financial transactions, medical devices, and critical infrastructure systems. 
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The PLL clock plays a crucial role in modern memory systems by optimizing performance, 
ensuring synchronization, managing power efficiently, and enhancing reliability. Its ability to 
generate stable, high-frequency clock signals that are phase-aligned with reference clocks is 
essential for meeting the demands of high-speed data access and maintaining data integrity. As 
memory technologies continue to evolve and demand higher performance, the importance of 
PLL clocks in optimizing memory operations will remain paramount. Understanding their 
functionality and significance is essential for designers and engineers working with contemporary 
memory technologies. 

 

2.1.8. JTAG interface 
The Joint Test Action Group (JTAG) interface is a standardized protocol used for testing and 
programming digital devices, particularly in the context of hardware design and testing 
processes. Originally developed for testing printed circuit boards (PCBs), JTAG has evolved into a 
crucial tool for debugging, programming, and verifying complex digital systems, including Field-
Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs) [11]. 

In the context of FPGAs, JTAG is essential for programming the device with the necessary 
configuration data. During the development phase, designers can use JTAG to load and test 
different configurations, making it easier to iterate on design changes. Additionally, JTAG allows 
for real-time debugging of the implemented logic, which is crucial for ensuring the correct 
functionality of the design. For ASICs, JTAG plays a vital role in the testing and validation process. 
The boundary scan feature allows engineers to test the interconnections between multiple chips 
on a PCB, ensuring that the ASIC functions correctly in its intended environment. This capability 
is particularly important for high-density designs where physical access to pins may be limited. 
JTAG provides a powerful debugging interface that allows designers to monitor and control the 
internal state of a device. This capability is invaluable for identifying and resolving issues that may 
arise during the development process. By accessing internal registers and memory, designers can 
gain insights into the operation of their designs and make necessary adjustments. JTAG is widely 
used in manufacturing testing to verify that devices are functioning correctly before they are 
shipped to customers. The ability to perform boundary scan tests and in-system programming 
helps ensure that any defects are identified and addressed early in the production process. The 
standardized nature of JTAG makes it easy to integrate into existing design and testing workflows. 
Many development tools and environments support JTAG, allowing designers to utilize its 
capabilities without extensive additional training or setup. 

The JTAG interface is a powerful and versatile tool in the realm of hardware design and testing, 
particularly for digital systems such as FPGAs and ASICs. Its capabilities for boundary scan testing, 
in-system programming, and real-time debugging make it an essential component of the 
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development process. By facilitating efficient testing and programming, JTAG helps ensure the 
reliability and functionality of complex digital designs, ultimately contributing to the success of 
hardware projects. 

 

2.2. Development Environments 
2.2.1. Quartus Prime Software 
Quartus Prime is a comprehensive development software suite developed by Intel (formerly 
Altera) for designing and implementing digital circuits on FPGAs (Field-Programmable Gate 
Arrays) and CPLDs (Complex Programmable Logic Devices). It provides a complete environment 
for hardware design, encompassing various tools for design entry, synthesis, simulation, and 
programming of programmable logic devices. Quartus Prime supports a wide range of Intel FPGA 
families, including the Cyclone, Arria, and Stratix series [13]. 

The features of Quartus Prime : 

1. Design Entry: Quartus Prime offers multiple design entry methods, including schematic 
capture, hardware description languages (HDLs) such as VHDL and Verilog, and graphical 
design entry. This flexibility allows designers to choose the method that best suits their 
workflow and project requirements. 

2. Synthesis: The software includes powerful synthesis tools that convert high-level design 
descriptions into gate-level representations suitable for implementation on FPGAs. The 
synthesis process optimizes the design for performance, area, and power consumption. 

3. Simulation and Verification: Quartus Prime provides integrated simulation tools that 
enable designers to verify the functionality of their designs before programming the 
hardware. This includes support for functional simulation, timing analysis, and debugging, 
ensuring that designs operate as intended. 

4. Programming and Configuration: The software facilitates the programming and 
configuration of FPGAs and CPLDs. It generates the necessary programming files and 
supports various programming methods, including JTAG and passive serial programming. 

5. Timing Analysis: Quartus Prime includes timing analysis tools that help designers ensure 
that their designs meet timing requirements. This feature is crucial for high-speed 
applications where timing violations can lead to functional errors. 

6. Integration with Other Tools: The Quartus Prime environment can be integrated with 
other development tools and third-party software, enhancing its capabilities and allowing 
for a more streamlined design process. 
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Quartus Prime is used for a variety of purposes in the field of digital design and FPGA 
development: 

1. FPGA Design and Implementation: Quartus Prime is primarily used for designing and 
implementing digital circuits on FPGAs. Its comprehensive toolset enables designers to 
create complex logic circuits, signal processing algorithms, and control systems efficiently. 

2. Prototyping and Development: The software is widely used in research and development 
environments for prototyping new ideas and concepts. Designers can quickly iterate on 
their designs, test them in simulation, and implement them on hardware, facilitating rapid 
development cycles. 

3. Educational Purposes: Quartus Prime is often used in academic settings for teaching 
digital design concepts and FPGA programming. Its user-friendly interface and extensive 
documentation make it accessible for students learning about programmable logic 
devices. 

4. Embedded Systems Development: The software supports the development of embedded 
systems that require custom hardware solutions. Designers can implement specific 
algorithms and control logic tailored to their application needs, enhancing system 
performance and efficiency. 

5. Signal Processing Applications: Quartus Prime is commonly used in applications involving 
digital signal processing (DSP), where high-speed data processing and real-time 
performance are essential. The software's capabilities allow for the implementation of 
complex DSP algorithms on FPGAs. 

In summary, Quartus Prime is a powerful and versatile development software suite used for 
designing, implementing, and programming digital circuits on FPGAs and CPLDs. Its 
comprehensive features, including design entry, synthesis, simulation, and programming, make 
it an essential tool for engineers, researchers, and educators in the field of digital design. 
Whether for prototyping, embedded systems development, or educational purposes, Quartus 
Prime plays a crucial role in enabling the effective implementation of custom hardware solutions. 

2.2.2. ModelSim Software 
ModelSim is a powerful simulation and debugging tool developed by Mentor Graphics, now part 
of Siemens EDA. It is widely used in the field of electronic design automation (EDA) for simulating 
digital designs described in hardware description languages (HDLs) such as VHDL and Verilog. 
ModelSim provides a comprehensive environment for verifying the functionality of digital 
circuits, making it an essential tool for engineers and designers working on FPGA and ASIC 
projects [14]. 
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The features of ModelSim: 

1. Multi-Language Support: ModelSim supports multiple hardware description languages, 
including VHDL, Verilog, and SystemVerilog. This versatility allows designers to work with 
various projects and collaborate with teams using different languages, enhancing its 
utility in diverse design environments. 

2. Advanced Simulation Capabilities: The tool offers advanced simulation features, 
including event-driven simulation, which efficiently manages the execution of simulations 
based on changes in signal states. This capability allows for faster simulation times, 
particularly in complex designs. 

3. Waveform Viewer: ModelSim includes a powerful waveform viewer that enables 
designers to visualize signal changes over time. This feature is crucial for debugging and 
analyzing the behaviour of digital circuits, as it allows users to observe the interactions 
between different signals and components. 

4. Debugging Tools: The software provides a suite of debugging tools, including breakpoints, 
watchpoints, and step-through execution. These tools help designers identify and resolve 
issues in their designs by allowing them to monitor specific signals and control the 
simulation flow. 

5. Testbench Generation: ModelSim facilitates the creation of testbenches, which are 
essential for verifying the functionality of designs. Designers can easily create and manage 
testbenches to simulate various scenarios and ensure that their designs meet the 
required specifications. 

6. Integration with Other Tools: ModelSim can be integrated with other EDA tools and 
environments, such as synthesis and implementation tools. This integration streamlines 
the design flow, allowing for a more efficient development process from simulation to 
hardware implementation. 

7. Support for Mixed-Signal Simulation: In addition to digital simulation, ModelSim 
supports mixed-signal simulation, allowing designers to simulate both analog and digital 
components within the same environment. This capability is particularly valuable in 
designs that involve both types of signals, such as RF and mixed-signal circuits. 

8. User-Friendly Interface: ModelSim features an intuitive user interface that simplifies 
navigation and operation. The graphical interface, combined with command-line 
capabilities, provides flexibility for users with varying preferences and expertise levels. 

ModelSim Applications : 

1. FPGA and ASIC Design Verification: ModelSim is extensively used in the verification of 
FPGA and ASIC designs, ensuring that the implemented logic functions as intended before 
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hardware fabrication. This verification process is critical for reducing errors and improving 
design reliability. 

2. Educational Use: The tool is also utilized in academic settings for teaching digital design 
concepts and HDL programming. Its comprehensive features and user-friendly interface 
make it an effective resource for students learning about hardware design and simulation. 

3. System-Level Design: ModelSim is employed in system-level design and verification, 
where complex interactions between various components need to be analyzed. The 
ability to simulate large designs and visualize signal behaviour is essential for ensuring 
system integrity. 

ModelSim is a robust simulation and debugging tool that plays a vital role in the electronic design 
automation landscape. Its multi-language support, advanced simulation capabilities, and 
comprehensive debugging tools make it an invaluable resource for engineers and designers 
working on digital circuits. By facilitating thorough verification and analysis of designs, ModelSim 
helps ensure the reliability and functionality of FPGA and ASIC implementations, ultimately 
contributing to the success of electronic projects. 

 

2.2.3. Qsys 
Qsys is a system integration tool developed by Intel (formerly Altera) that is part of the Quartus 
Prime design software suite. It is designed to simplify the process of creating complex systems 
on FPGAs by providing a graphical interface for integrating various components, such as 
processors, memory interfaces, peripherals, and custom hardware blocks. Qsys enables 
designers to efficiently create, configure, and manage system-level designs, facilitating rapid 
development and prototyping of embedded systems [15]. 

The features of Qsys 

1. Graphical System Design: Qsys provides a user-friendly graphical interface that allows 
designers to visually connect different components in a system. This graphical 
representation simplifies the design process, making it easier to understand and manage 
complex interconnections. 

2. Component Integration: Qsys supports the integration of a wide range of components, 
including Intel's Nios II soft processor, memory blocks, peripherals (such as UARTs, timers, 
and GPIO), and custom logic blocks. Designers can easily add and configure these 
components to meet their specific application requirements. 

3. Automatic Connection Generation: The tool automatically generates the necessary 
interconnect logic and protocols required for communication between components. This 
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feature reduces the manual effort involved in wiring components together and minimizes 
the risk of errors in the design. 

4. Parameterization: Qsys allows for parameterization of components, enabling designers 
to customize settings such as data widths, clock frequencies, and memory sizes. This 
flexibility ensures that the integrated system can be tailored to meet the specific needs 
of the application. 

5. System-Level Simulation: Qsys supports system-level simulation, allowing designers to 
verify the functionality of the integrated system before implementation. This capability is 
essential for identifying and resolving potential issues early in the design process. 

6. Integration with Other Tools: Qsys is designed to work seamlessly with other tools in the 
Quartus Prime environment, such as the Quartus Compiler and the Nios II Software Build 
Tools (SBT). This integration streamlines the overall design flow, from system integration 
to software development. 

 The applications of Qsys : 

1. Embedded Systems Development: Qsys is widely used in the development of embedded 
systems that require custom hardware solutions. By integrating processors, memory, and 
peripherals, designers can create tailored systems that meet specific application 
requirements, such as industrial control, automotive systems, and consumer electronics. 

2. Prototyping and Rapid Development: The graphical nature of Qsys allows for rapid 
prototyping of complex systems. Designers can quickly assemble and modify system 
components, facilitating iterative development and testing. This capability is particularly 
valuable in research and development environments where time-to-market is critical. 

3. Digital Signal Processing (DSP): Qsys is commonly used in applications involving digital 
signal processing, where high-speed data processing and real-time performance are 
essential. By integrating DSP algorithms with hardware accelerators, designers can 
achieve efficient implementations of complex signal processing tasks. 

4. Custom Hardware Solutions: Qsys enables the creation of custom hardware solutions 
that leverage the unique capabilities of FPGAs. Designers can implement specialized 
algorithms or processing functions that are not available in off-the-shelf components, 
providing a competitive advantage in various applications. 

5. Education and Training: Qsys is also utilized in academic settings for teaching digital 
design concepts and FPGA programming. Its intuitive graphical interface makes it 
accessible for students learning about system integration and hardware design, 
enhancing their understanding of complex systems. 
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In summary, Qsys is a powerful system integration tool that simplifies the process of designing 
and implementing complex systems on FPGAs. Its graphical interface, component integration 
capabilities, and support for parameterization and simulation make it an essential tool for 
engineers and designers in various fields, including embedded systems development, digital 
signal processing, and custom hardware solutions. By facilitating rapid prototyping and providing 
a streamlined design flow, Qsys plays a crucial role in enabling the effective implementation of 
advanced electronic systems. 

2.2.4. Hardware Description Language 
Hardware Description Language (HDL) is a specialized programming language used to model, 
design, and simulate electronic systems, particularly digital circuits. HDLs allow engineers and 
designers to describe the behaviour and structure of hardware components in a way that can be 
synthesized into physical hardware, such as Field-Programmable Gate Arrays (FPGAs) and 
Application-Specific Integrated Circuits (ASICs). The power of HDL lies in its ability to provide a 
high-level abstraction for hardware design, enabling complex systems to be described succinctly 
and effectively. 

HDLs provide a level of abstraction that allows designers to focus on the functionality of the 
hardware rather than the low-level implementation details. This abstraction facilitates easier 
design, modification, and understanding of complex systems. 

HDLs enable the simulation of hardware designs before they are physically implemented. This 
capability allows designers to verify the functionality of their designs, identify potential issues, 
and optimize performance without the need for costly prototypes. 

HDL designs can be modular and reusable, allowing components to be easily integrated into 
different projects. This reusability accelerates the design process and reduces development time. 

 HDLs can be synthesized into actual hardware using synthesis tools. This means that designs 
described in HDL can be translated into gate-level representations that can be implemented on 
FPGAs or ASICs. 

 HDLs inherently support parallelism, reflecting the concurrent nature of hardware operations. 
This allows designers to model and implement systems that can perform multiple operations 
simultaneously, which is crucial for high-performance applications. 

 

Verilog is one of the most widely used hardware description languages, particularly in the design 
and verification of digital circuits. It was developed in the 1980s and has since become a standard 
for HDL due to its versatility and ease of use. Verilog allows designers to describe hardware at 
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various levels of abstraction, from high-level behavioural descriptions to low-level gate-level 
representations [16]. 

Verilog supports behavioural modelling, allowing designers to describe how a circuit should 
behave without specifying the exact implementation details. This high-level description simplifies 
the design process and enables rapid prototyping. In addition to behavioural modelling, Verilog 
allows for structural modelling, where designers can specify how different components are 
interconnected. This feature is useful for building complex systems from smaller, reusable 
modules. 

Verilog provides constructs for creating testbenches, which are essential for simulating and 
verifying the functionality of hardware designs. Testbenches allow designers to apply stimulus to 
their designs and observe the outputs, facilitating thorough verification. 

Verilog naturally supports concurrent execution, reflecting the parallel nature of hardware. This 
capability allows designers to model systems that can perform multiple tasks simultaneously, 
which is critical for high-performance applications. 

 Verilog is widely supported by synthesis tools, enabling designs to be translated into gate-level 
representations for implementation on FPGAs and ASICs. This compatibility makes Verilog a 
practical choice for hardware design [17]. 

In the context of this project, Verilog is utilized to implement the custom instructions and 
combinatorial logic required for optimizing the Fast Fourier Transform (FFT) algorithm. The 
following aspects highlight the relevance of Verilog in this project: 

1. Efficient Design Representation: Verilog allows for a clear and concise representation of 
the combinatorial logic needed for the FFT, enabling designers to focus on the 
functionality without getting bogged down by low-level details. 

2. Simulation and Verification: The ability to simulate the Verilog design before 
implementation is crucial for verifying the correctness of the custom instructions. This 
simulation helps identify potential issues early in the design process, reducing the risk of 
errors in the final hardware. 

3. Modularity and Reusability: Verilog's support for modular design allows the custom 
instructions to be developed as reusable components. This modularity facilitates easier 
integration and testing within the larger system. 

4. Synthesis for FPGA Implementation: The synthesis compatibility of Verilog ensures that 
the designs can be easily translated into hardware that can be implemented on the Nios 
II processor within an FPGA. This capability is essential for achieving the desired 
performance improvements in the FFT algorithm. 



27 
 

Hardware Description Languages, particularly Verilog, are powerful tools for designing and 
implementing digital systems. The abstraction, simulation capabilities, reusability, and synthesis 
support provided by HDLs enable efficient and effective hardware design. In this project, 
Verilog plays a critical role in implementing the custom instructions and combinatorial logic 
necessary for optimizing the FFT algorithm, ultimately enhancing the performance of the Nios II 
processor in real-time signal processing applications. 

 

2.2.5. Eclipse 
Eclipse is a widely-used integrated development environment (IDE) primarily designed for Java 
development, although it supports various programming languages through the use of plugins. 
Originally developed by IBM, Eclipse is now maintained by the Eclipse Foundation, which 
oversees its ongoing development and the community surrounding it. The IDE provides a robust 
set of tools for software development, including code editing, debugging, and project 
management, making it a popular choice among developers across different domains [18]. 

The features of Eclipse 

1. Modular Architecture: Eclipse is built on a modular architecture, allowing developers to 
extend its functionality through plugins. This flexibility enables the integration of various 
tools and frameworks, accommodating a wide range of programming languages and 
development needs. 

2. Rich Development Tools: The IDE offers a comprehensive suite of development tools, 
including a powerful code editor with syntax highlighting, code completion, and 
refactoring capabilities. These features enhance productivity and improve code quality. 

3. Debugging Support: Eclipse provides integrated debugging tools that allow developers 
to set breakpoints, inspect variables, and step through code execution. This functionality 
is essential for identifying and resolving issues during the development process. 

4. Version Control Integration: The IDE supports integration with version control systems 
such as Git and Subversion, enabling developers to manage their code repositories 
directly within the environment. This integration facilitates collaboration and version 
management in software projects. 

5. Project Management: Eclipse includes project management features that help 
developers organize their code, manage dependencies, and configure build settings. The 
IDE supports various build systems, including Maven and Gradle, streamlining the build 
process. 
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6. Cross-Platform Support: Eclipse is a cross-platform IDE, meaning it can run on various 
operating systems, including Windows, macOS, and Linux. This versatility allows 
developers to work in their preferred environments without compatibility issues. 

Significance of Eclipse in Software Development 

1. Community and Ecosystem: Eclipse has a large and active community of developers 
who contribute to its ecosystem by creating plugins and extensions. This community 
support ensures that developers have access to a wealth of resources, tools, and 
documentation, enhancing their development experience. 

2. Standardization: Eclipse has become a de facto standard for Java development, 
particularly in enterprise environments. Many organizations rely on Eclipse for building 
Java applications, and its widespread adoption has led to the establishment of best 
practices and conventions within the community. 

3. Support for Multiple Languages: While Eclipse is primarily known for Java development, 
its extensibility allows it to support numerous programming languages, including C/C++, 
Python, PHP, and more. This capability makes Eclipse a versatile tool for developers 
working in diverse programming environments. 

4. Integration with Development Frameworks: Eclipse seamlessly integrates with popular 
development frameworks and tools, such as Spring, Hibernate, and Android SDK. This 
integration simplifies the development process and enables developers to leverage 
powerful frameworks to enhance their applications. 

5. Educational Use: Eclipse is widely used in academic settings for teaching programming 
and software development concepts. Its user-friendly interface and extensive features 
provide students with a practical environment to learn and practice coding. 

In summary, Eclipse is a powerful and versatile integrated development environment that plays 
a significant role in software development. Its modular architecture, rich set of development 
tools, and extensive community support make it a popular choice among developers for 
building applications across various programming languages. The IDE's significance in 
standardizing Java development, supporting multiple languages, and integrating with popular 
frameworks further cements its position as a valuable tool in the software development 
landscape. Whether for professional development or educational purposes, Eclipse continues 
to be an essential resource for developers worldwide. 
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2.2.6. Nios II C language  
The Nios II C language refers to the C programming language used in conjunction with the Nios 
II soft processor, developed by Intel (formerly Altera). Nios II is a highly configurable and 
flexible processor that can be implemented on FPGAs, allowing developers to create custom 
hardware solutions tailored to specific application requirements. The use of C language in 
programming the Nios II processor provides a high-level abstraction for developing embedded 
applications, enabling easier code management and faster development cycles [19]. 

The features of Nios II C Language 

1. High-Level Abstraction: The C language offers a high-level abstraction that simplifies the 
development of complex algorithms and system functionalities. This abstraction allows 
developers to focus on the logic of their applications without delving into low-level 
hardware details. 

2. Portability: C is a widely used programming language with a strong emphasis on 
portability. Code written for the Nios II processor can often be adapted for use on other 
platforms with minimal modifications, making it easier to share and reuse code across 
different projects. 

3. Rich Standard Library: The Nios II C environment provides access to a rich set of 
standard libraries, including functions for input/output operations, string manipulation, 
and mathematical computations. These libraries facilitate rapid development and 
reduce the need for custom implementations of common functions. 

4. Support for Embedded Systems: The C language is well-suited for embedded systems 
development, providing features such as direct memory access and hardware 
manipulation. This capability allows developers to efficiently interface with peripherals 
and manage system resources. 

5. Integration with Development Tools: Nios II C can be seamlessly integrated with 
development tools like Eclipse, which provides a comprehensive IDE for writing, 
debugging, and managing C code. The integration with Eclipse enhances the 
development experience by offering features such as code completion, syntax 
highlighting, and debugging support. 

The advantages of Using C Language with Nios II : 

1. Rapid Development: The high-level nature of C allows for faster development cycles, 
enabling engineers to prototype and iterate on their designs quickly. 

2. Easier Maintenance: C code is generally easier to read and maintain compared to lower-
level programming languages, which simplifies future updates and modifications. 



30 
 

3. Access to Hardware Features: The ability to manipulate hardware directly through C 
provides developers with the tools needed to optimize performance and resource 
utilization in embedded applications. 

4. Community and Resources: The widespread use of the C language means that 
developers have access to a wealth of resources, libraries, and community support, 
which can facilitate problem-solving and knowledge sharing. 

The Nios II C language is a powerful tool for developing embedded applications on the Nios II 
soft processor. Its high-level abstraction, portability, and rich standard library make it an ideal 
choice for engineers looking to create custom hardware solutions. By leveraging development 
tools like Eclipse, programmers can efficiently write, debug, and manage their C code, 
streamlining the overall development process. The combination of C programming and the Nios 
II processor enables the creation of flexible and efficient embedded systems tailored to specific 
application requirements. 
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3.Methodology 
The proposed solution in this project focuses on the design and implementation of a custom 
instruction for the butterfly operation within the Decimation-In-Time Fast Fourier Transform 
algorithm, utilizing the NIOS II processor in an FPGA-based environment. This approach aims to 
optimize the computational efficiency of the FFT, which is a critical algorithm in digital signal 
processing applications. The DIT algorithm optimizes computational efficiency by reducing the 
number of arithmetic operations needed, making it well-suited for the parallel processing 
capabilities of FPGAs; Multiple butterfly operations can be executed simultaneously, significantly 
speeding up calculations. Additionally, the NIOS II processor allows for custom instruction 
integration, enabling the design of tailored instructions that accelerate critical operations within 
the DIT algorithm, further enhancing execution speed. The DIT approach is also memory efficient, 
as it processes data in a time-domain sequence, minimizing memory usage and effectively 
utilizing the on-chip memory and SDRAM available on the DE2i-150 Board. Its inherent scalability 
allows the implementation to adapt to various FFT lengths and complexities, making it versatile 
for different applications. Furthermore, the combination of the DIT algorithm and the NIOS II 
processor supports real-time processing capabilities, ensuring timely data analysis for 
applications such as telecommunications and audio processing. Lastly, the rapid prototyping and 
testing capabilities of the DE2i-150 Board reduce development time, allowing for quicker 
iterations and refinements in design, making the DIT algorithm an ideal choice for efficient FFT 
implementations. The strong points of this solution include: 

1. Performance Enhancement: By offloading the butterfly operation to a custom instruction 
executed in hardware, we can significantly reduce execution time compared to traditional 
software implementations. 

2. Resource Optimization: The custom instruction is designed to utilize FPGA resources 
efficiently, allowing for more complex operations to be performed within the same 
hardware constraints. 

3. Flexibility and Scalability: The NIOS II processor's configurability allows for easy 
adaptation of the custom instruction to various DSP applications, making it a versatile 
solution for future developments. 

4. Real-Time Processing Capability: The hardware acceleration provided by the custom 
instruction enables real-time processing of signals, which is essential for applications in 
various fields, including telecommunications, audio and video processing, medical 
imaging, and control systems. 
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3.1. Custom Instructions design and implementation  
Before defining the system using Qsys, the first step in the design flow is to create custom 
instructions for the butterfly operation in the Decimation-In-Time Fast Fourier Transform 
algorithm. Due to the limitations of the output ports of the combinatorial logic custom 
instruction, the butterfly operation was splits into three distinct custom instructions. This 
approach allows for efficient computation while adhering to the constraints of the hardware 
architecture. 

 

Overview of the Butterfly Operation 

In the context of the DIT FFT, the butterfly operation is used to combine two complex numbers, 
typically referred to as x0 and x1. These numbers are derived from the input sequence and 
represent the values at specific indices in the FFT computation. The butterfly operation applies a 
specific mathematical transformation to these values, utilizing a twiddle factor to scale the inputs 
appropriately. 

The butterfly operation can be mathematically expressed as follows: 

Given two complex numbers: 

• x0 (the first input) 

• x1 (the second input) 

The butterfly operation produces two outputs: 

• X0 (the sum) 

• X1 (the difference) 

The equations for the butterfly operation are defined as: 

 

                                        x0                                                                                                    X0=x0 + 𝑊𝑊𝑁𝑁
1 x1 

 

                                        x1                                                                                                     X1=x0 − 𝑊𝑊𝑁𝑁
1 x1 

 

 

Figure 3-1:Butterfly computation for DIT radix-2 FFT 
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Where: 

• 𝑊𝑊𝑁𝑁
𝑘𝑘= 𝑒𝑒−𝑗𝑗𝑁𝑁2𝜋𝜋𝑘𝑘  is the twiddle factor, which represents a complex exponential that depends 

on the current stage k of the FFT and the total number of points N 

In this context, we consider two complex inputs,  x[0]  and  x[1] , represented as: 

x[0] = a + bj 

x[1] = c + dj 

where a ,  b ,  c and d are real numbers, and  j denotes the imaginary unit. 

The butterfly operation combines these two complex numbers using a specific transformation 
that involves trigonometric functions, particularly cosine and sine. The equations for the outputs 
x[0]  and  x[1] are derived as follows: 

1. For X[0] : 

   The output X[0] is computed by adding x[0]  and a scaled version of  x[1]  

X[0] = x[0] + (x[1] e–j2πkn/N  ) 

   

 Expanding this using the definitions of x[0] and x[1] : 

   

X[0] = (a + bj) + (c + dj) * (cos(2πkn/N) + j sin(2πkn/N)) 

    

   Simplifying this expression leads to: 

X[0] = (a + c*cos(2πkn/N) - d*sin(2πkn/N)) + (b + c*sin(2πkn/N) + d*cos(2πkn/N))j 

 

2.  For X[1] : 

   The output X[1]  is computed by subtracting the scaled version of  x[1]  from  x[0] : 

X[1] = x[0] - (x[1] e–j2πkn/N  ) 
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Again, expanding this expression gives: 

    

X[1] = (a + bj) - (c + dj) * (cos(2πkn/N) + j sin(2πkn/N)) 

  

   Simplifying this leads to: 

X[1] =(a - c*cos(2πkn/N) + d*sin(2πkn/N)) + (-b - c*sin(2πkn/N) - d*cos(2πkn/N))j 

 

Thus, the final equations for the outputs X[0] and  X[1] in terms of the real and imaginary parts 
of the complex inputs x[0] and  x[1]  are: 

 

X[0] = (a + c*cos(2πkn/N) - d*sin(2πkn/N)) + (b + c*sin(2πkn/N) + d*cos(2πkn/N))j 

Real part                                              Imaginary part 

X[1] = (a - c*cos(2πkn/N) + d*sin(2πkn/N)) + (-b – c*sin(2πkn/N) – d*cos(2πkn/N))j 

Real part                                              Imaginary part 

In the context of designing custom instructions for the butterfly operation in Verilog HDL, these 
equations serve as the foundation for the implementation. Given the limitations of the output 
ports of combinatorial logic custom instructions, the butterfly operation is split into three distinct 
custom instructions: 

 

3.1.1. Custom Instruction for Multiplication:  
The multiplier module is a fundamental building block used in the Decimation in Time Fast 
Fourier Transform algorithm for performing multiplication operations on signed 32-bit inputs. 
Specifically, this module is utilized to calculate the products of the form c*cos(2πkn/N), c 
*sin(2πkn/N) , d*cos(2πkn/N) and  d*sin(2πkn/N) , where c and d are real and imaginary x[1] 
input data . These products are essential for the butterfly operations that combine pairs of 
complex numbers during the FFT computation. The figure 3-2 represents the flowchart of the 
multiplier custom instruction. 
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Figure 3-2 flowchart of Multiplier Custom instruction 

• Inputs: 

• A: This 32-bit signed input represents one of the coefficients (either c or d) that 
will be multiplied by the respective trigonometric function (cosine or sine). 

• B: This 32-bit signed input represents the value of the cosine or sine function 
evaluated at the current FFT stage. 

 

• Output: 

• result: This 32-bit signed output provides the product of the two input values, 
which represents the scaled value of the coefficient by the trigonometric function. 
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The multiplier module performs a straightforward multiplication operation: 

• Multiplication Operation: The module uses the assign statement to compute the product 
of the two signed inputs A and B. The result is directly assigned to the output result. The 
synthesis tool will implement this multiplication in hardware, typically using a 
combination of adders and shift registers to achieve efficient computation. 

These calculations are essential for the butterfly operations. The result of this custom operation 
is stored in variables c_cos_theta, c_sin_theta, d_sin_theta and d_cos_theta. These values are 
used by sending them to calculate the remainder of calculate_X0 and calculate_X1 custom 
instructions. 
 

3.1.2. Custom Instruction for X[0] : 
 The calculate_X0 module is designed to perform a critical operation within the Decimation in 
Time Fast Fourier Transform algorithm. Specifically, it implements part of the butterfly operation, 
which is essential for efficiently combining pairs of complex numbers during the FFT 
computation. This module processes two 32-bit input words, extracts relevant components, and 
computes the resulting values that contribute to the overall FFT output. The figure 3-3 represents 
the flowchart of the custom instruction calculate Xo. 
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Figure 3-3 flowchart of Custom instruction Calculate X0 

• Inputs: 

• data_a: This 32-bit input contains three components: 

• a: The first part (10 bits) represents real part of x[0] input values. 

• c_cos_theta: The second part (11 bits) represents the cosine of the angle 
associated with the FFT stage. 
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• c_sin_theta: The third part (11 bits) represents the sine of the angle 
associated with the FFT stage. 

• data_b: This 32-bit input contains three components: 

• b: The first part (10 bits) represents imaginary part of x[0] input value. 

• d_sin_theta: The second part (11 bits) represents the sine of the angle for 
the second input. 

• d_cos_theta: The third part (11 bits) represents the cosine of the angle for 
the second input. 

• Output: 

• result: This 32-bit output combines the results of the calculations performed in 
the module, specifically the results of the butterfly operation. 

The calculate_X0 module performs several key calculations to achieve its purpose: 

• Extraction of Components: The module splits the input data into its respective parts using 
bit slicing. This allows it to access the individual components necessary for the butterfly 
operation. 

• Intermediate Signal Calculations: 

• Term Calculations: 

• term1: This computes the sum of a and c_cos_theta, which is part of the 
butterfly operation. 

• term2: This subtracts d_sin_theta from term1, contributing to the first 
output of the butterfly operation. 

• term3: This computes the sum of b and c_sin_theta, which is necessary for 
the second output of the butterfly operation. 

• term4: This adds d_cos_theta to term3, finalizing the second output of the 
butterfly operation. 

• Result Assignment: The final output result is constructed by concatenating term2 which 
is the real part and term4 which is the imaginary part. This output represents the 
combined results of the butterfly operation, which will be used in subsequent stages of 
the FFT computation. 
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The butterfly operation is a fundamental aspect of the DIT FFT algorithm, where pairs of complex 
numbers are combined to produce new values that reflect the frequency components of the 
input signal. The calculate_X0 module directly implements part of this operation by performing 
the necessary arithmetic on the components extracted from the input data. 

 

3.1.3. Custom Instruction for  X[1] :  
The calculate_X1 module in the figure is designed to perform a critical operation within the 
context of the Decimation in Time Fast Fourier Transform algorithm. Specifically, it implements 
part of the butterfly operation, which is essential for efficiently combining pairs of complex 
numbers during the FFT computation. This module takes two 32-bit input words, processes them 
to extract relevant components, and computes the resulting values that contribute to the overall 
FFT output. The figure 3-4 represents the flowchart of the custom instruction calculate X1. 

 

 

Figure 3-4 flowchart of Custom instruction Calculate X1 
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Inputs: 

• data_a: This 32-bit input contains three components: 

• a: The first part (10 bits) represents real part of x[0] input values. 

• c_cos_theta: The second part (11 bits) represents the cosine of the angle 
associated with the FFT stage. 

• c_sin_theta: The third part (11 bits) represents the sine of the angle 
associated with the FFT stage. 

• data_b: This 32-bit input contains three components: 

• b: The first part (10 bits) represents imaginary part of x[0] input value. 

• d_sin_theta: The second part (11 bits) represents the sine of the angle for 
the second input. 

• d_cos_theta: The third part (11 bits) represents the cosine of the angle for 
the second input. 

Output: 

• result: This 32-bit output combines the results of the calculations performed in 
the module, specifically the results of the butterfly operation. 

 

The calculate_X1 module performs several key calculations to achieve its purpose: 

• Extraction of Components: The module splits the input data into its respective parts using 
bit slicing. This allows it to access the individual components necessary for the butterfly 
operation. 

• Intermediate Signal Calculations: 

• Term Calculations: 

• term5: This computes the difference between a and c_cos_theta, which is 
part of the butterfly operation. 
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• term6: This adds d_sin_theta to term5, contributing to the first output of 
the butterfly operation. 

• term7: This computes the negative of b and subtracts c_sin_theta, which 
is necessary for the second output of the butterfly operation. 

• term8: This subtracts d_cos_theta from term7, finalizing the second 
output of the butterfly operation. 

• Result Assignment: The final output result is constructed by concatenating term6 which 
is the real part and term8 which is the imaginary part. This output represents the 
combined results of the butterfly operation, which will be used in subsequent stages of 
the FFT computation. 

The butterfly operation is a fundamental aspect of the DIT FFT algorithm, where pairs of complex 
numbers are combined to produce new values that reflect the frequency components of the 
input signal. The calculate_X1 module directly implements part of this operation by performing 
the necessary arithmetic on the components extracted from the input data. 

 

By structuring the custom instructions in this manner, we can efficiently implement the butterfly 
operation while adhering to the constraints of the hardware architecture. This approach not only 
optimizes performance but also facilitates the integration of the butterfly operation into the 
overall FFT computation within the NIOS II processor.  

The butterfly operation is a critical aspect of the DIT FFT algorithm, enabling efficient 
computation of the DFT. By breaking down the operation into manageable custom instructions, 
we can leverage hardware acceleration to enhance the performance of FFT computations in 
digital signal processing applications.     
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3.2. Define system using Qsys 

 

Figure 3-5 System Design Flow 

 
The design flow for creating custom instructions for the butterfly operation in the Fast Fourier 
Transform shown in the figure 3-1 involves several critical steps, including defining the system 
using Qsys, selecting components, establishing connections, and generating the system. This 
section outlines the entire process in detail. 

Qsys (now known as Platform Designer) is an integrated development environment provided by 
Intel (formerly Altera) for designing systems on FPGAs. To build the system follow these steps: 

The first step involves selecting the necessary components for the system. The following 
components are essential for implementing the FFT algorithm: 

1. NIOS II Processor: Select the NIOS II processor as the central processing unit.  

2. SDRAM IP: Adding an SDRAM to interface with external SDRAM, providing additional 
memory resources for larger datasets. 
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3. Custom Instructions: Create a custom instruction module specifically for the butterfly 
operation. This module was designed using Verilog HDL and integrated into the NIOS II 
processor by adding the process file as in Figure 3-6 and set the ports as shown Figure 3-7 to 
become a custom instruction. 

 

Figure 3-6: adding the custom instruction file 
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Figure 3-7: Set the custom instruction signals 

 

4. JTAG Interface: Include a JTAG interface for in-system programming and debugging 
capabilities, allowing for real-time monitoring and modification of the design. 

5. Timer: Add a timer component to manage execution timing and control the flow of 
operations during FFT processing. 

6. System and SDRAM Clocks: Configure the system and SDRAM clocks to ensure proper 
timing and synchronization across the entire system. 

Once the components are selected, the next step is to establish connections between them as in           
Figure 3-8: 

1. Connect the NIOS II Processor: Link the NIOS II processor to the on-chip memory and 
SDRAM, ensuring that data can be efficiently accessed and processed. 

2. Integrate Custom Instructions: Connect the custom instruction modules to the NIOS II 
processor, allowing it to be executed as part of the processor's instruction set. Then set 
the Opcode for each one. 

3. Connect the JTAG Interface: Establish a connection between the JTAG interface and the 
NIOS II processor to facilitate programming and debugging. 
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4. Integrate Timer: Connect the timer to the NIOS II processor to manage execution timing 
for the FFT computations. 

5. Configure Clocks: Ensure that the system and SDRAM clocks are properly connected to 
all relevant components to maintain synchronization. 

 

Figure 3-8: component connection in Qsys. 

 
After establishing all connections, the final step is to generate the system: 

1. System Generation: This process will compile all the components and connections into a 
cohesive design. 

2. HDL File Generation: Upon successful generation, two key files will be created: 

• HDL Files: These files contain the hardware description language code for the 
entire system, which will be used in Quartus Prime for synthesis and 
implementation. 
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• System Description File: This file provides a description of the system for the NIOS 
II Software Build Tools (SBT) for Eclipse, detailing how the software will interact 
with the hardware components. 

3. Exporting Files: Ensure that the generated HDL files and system description file are 
correctly exported and saved in the appropriate project directory for further 
development. 

 

 

3.3. Hardware Design Flow 
 

After getting the HDL file from the Qsys and adding it to the project in the Quartz Prime and make 
it a Top-Level Entity, the next step is to do a simple programmatic conversion to get the 
unconnected pins in the system and connect them by filling in their data using the assignment 
editor as in Figure 3-9. The data is filled in based on the user manual for the board used in this 
project. 

 

Figure 3-9: Connect the pins using assignment editor 

 

Then start the Full Compilation to compile the project before download it in the target FPGA 
device.     After complete the compilation successfully, the compilation produces the .sof file that 
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is the file to be downloaded to the Cyclone IV GX  EP4CGX150DF31C7 device in the DE2i-150 
board using programmer as in Figure 3-10. 

 

Figure 3-10: Download the .sof file to Cyclone IV GX  EP4CGX150DF31C7 device. 

 

3.4. Software Design Flow  
 

In the software flow, the Nios II SBT for Eclipse is utilized to develop the software application that 
operates on the system. A new software application project is created, along with a board 
support package (BSP) for the project, which provides a software runtime environment tailored 
for the hardware system defined in the hardware flow. The software source files are added to 
the project, the project is configured, and the project is built. The outcome of the build process 
is an .elf file. The application .elf is then downloaded to the memory location expected by the 
Nios II processor for locating the executable program. Subsequently, the application .elf is 
executed by the Nios II processor. 

 

For creating the Board Support Package (BSP) project using the Nios II Software Build Tools (SBT) 
for Eclipse , a systematic approach was employed. Initially, the Nios II SBT for Eclipse was started 
on the respective operating system.  
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Upon the appearance of the Workspace Launcher dialog box, the default workspace location was 
accepted by clicking OK Figure 3-11. The main program interface appears as shown in the Figure 
3-12. 

 

Figure 3-11: Workspace Launcher 

 

Figure 3-12:NIOS II Eclipse interface 

 

From the NEW icon, a select wizard window appears Figure 2-14. Through it, an option is Nios II 
Application and BSP from Template selected. 
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Figure 3-13: select wizard window 

  

After confirming the option, a Nios II Application and BSP from Template window appears Figure 
3.13 through which the SOPC file for the project is selected. When this file is selected, the name 
of the processor that was assigned through the Qsys will appear in the CPU name field, then the 
name for the software project is written in the project name field. 
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Figure 3-14: Nios II Application and BSP from Template window. 

 

The implementation of the Fast Fourier Transform (FFT) using the Decimation in Time (DIT) 
algorithm on the NIOS II processor in the Appendix A be approached through two primary 
methods: a software-only (non-custom) execution and an execution that leverages custom 
instructions. This section delves into the specifics of both approaches, highlighting their design, 
functionality, and performance implications. 

The code begins by including essential libraries that facilitate mathematical computations, 
memory management, and system-level operations: 

• Standard Libraries: These include stdio.h, stdlib.h, math.h, and stdint.h, which provide 
functionalities for input/output operations, dynamic memory allocation, mathematical 
functions, and fixed-width integer types, respectively. 

• System Libraries: system.h and alt_types.h are specific to the NIOS II 
architecture, providing system-level definitions and data types. 
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• Performance Measurement: The time.h headers are included to facilitate performance 
measurement through a hardware timer. 

                                                                                                                                                                         
The implementation uses fixed-point arithmetic to enhance performance while maintaining 
precision: 

 

The number of fractional bits is defined, allowing for the conversion between floating-point and 
fixed-point representations. This is crucial for optimizing the FFT calculations, especially in 
hardware implementations. 

Conversion Functions: 

 

These helper functions convert between floating-point and fixed-point formats, enabling 
efficient arithmetic operations in the FFT algorithm. 

The FFT is implemented using the Decimation in Time (DIT) approach. The functions fft_custom 
and fft_software is defined as follows: 
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The main FFT computation is performed in stages. For each stage, twiddle factors (complex 
exponentials) are computed, and the butterfly operation using custom instructions in fft_custom 
and using standard arithmetic in fft_software : 

The DIT FFT operates on a sequence of complex numbers, typically represented as two separate 
arrays: one for the real parts and one for the imaginary parts. The length of the input data must 
be a power of 2 (e.g., 256, 512, 1024, etc.), which simplifies the computation. 

In C, dynamic memory allocation is often used to handle large datasets. You will need to allocate 
memory for the real and imaginary parts of the input data, as well as for any temporary variables 
used during computation. This can be done using the malloc function: 

The first step in the DIT FFT algorithm is to rearrange the input data using a bit-reversal 
permutation. This step ensures that the data is organized in a manner conducive to efficient 
processing. The bit-reversal permutation involves the following steps: 

• Calculate the number of bits required to represent the length of the input n using log2(n). 

• Loop through each index i from 0 to n−1 and compute the bit-reversed index j. 

• If j is greater than i, swap the elements at indices i and j for both the real and imaginary 
arrays. 

Once the input data has been rearranged, the main FFT computation begins. This involves 
iterating through multiple stages, where each stage combines smaller FFTs into larger ones. The 
steps for this computation are as follows: 

• Stage Loop: Loop through each stage from 1 to the number of bits (i.e., log2(n)). 

• Step Size Calculation: For each stage, calculate the step size, which is 2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and 
the half_size, which is half of the step. 

• Butterfly Operations: For each half-size, calculate the twiddle factors (complex 
exponentials) based on the current stage and butterfly index. The twiddle factors are 
computed using cosine and sine functions. 

During each butterfly operation, the real and imaginary parts of the input data are updated based 
on the results of the calculations. The new values are computed as follows: 

• For each index i, compute the temporary values t_real and t_imag using the Traditional 
instructions sets in the non-custom function and using the custom instructions in the 
custom function. 

• Update the values at indices i and j in the real and imaginary arrays. 

After completing all stages of the FFT computation, the final output will be stored in the real and 
imaginary arrays. These arrays represent the frequency components of the original input signal. 
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Main Function 
The main function orchestrates the execution of the FFT algorithm. By allowing users to input the 
length of the FFT and the corresponding real and imaginary parts of the data. It begins by 
allocating memory for the real and imaginary arrays, as well as copies for a non-custom 
implementation. After checking for successful memory allocation, the user is prompted to enter 
the values for each input. The code then measures the execution time for the FFT using custom 
instructions, followed by the non-custom FFT implementation, calculating the elapsed time for 
both methods. The results of each FFT computation are printed, along with a performance 
comparison highlighting the execution times of the two approaches. Finally, the code ensures 
proper memory management by freeing the allocated memory for all arrays, preventing memory 
leaks and maintaining efficient resource usage. This structure emphasizes the importance of 
performance optimization in digital signal processing applications. 

 

Performance Measurement: The execution time for both the custom instruction-based FFT 
and the non-custom FFT are measured using the clock() function. 
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4.Results 
This chapter presents the results obtained from the implementation of the Fast Fourier 
Transform algorithm using custom instructions on the NIOS II Embedded Processor. The primary 
objective of this study is to evaluate the performance improvements achieved through hardware 
acceleration compared to a traditional non-custom implementation. The results are organized to 
highlight key performance metrics, including execution time, while providing a comparative 
analysis of both approaches. 

The experiments were conducted on a NIOS II processor implemented on a DE2i-150 FPGA 
platform. The development environment utilized includes Quartus Prime for hardware design 
and NIOS II Software Build Tools for C programming. The processor was configured with custom 
instructions specifically designed to enhance the FFT computation. 

 

4.1 Results Presentation 
The results of the Fast Fourier Transform computations shown in Figure 4-1 performed using both 
custom instructions and a non-custom implementation. The input data consisted of two complex 
numbers with specified real and imaginary parts. The FFT algorithm was executed to analyse the 
frequency components of the input signal.  

 

Figure 4-1results of FFT computation 
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The FFT results obtained from both the custom instructions and the software-only 
implementation are identical, indicating that both methods successfully computed the FFT of the 
input data. The results can be interpreted as follows: 

• Frequency Component X[0]: The value 8+0i represents the DC component (zero 
frequency) of the input signal, which is the sum of the input values. This is expected, as 
the sum of the real parts (2 + 6) yields 8, and the imaginary parts are both zero. 

• Frequency Component X[1]: The value −4+0i represents the first harmonic component of 
the signal. This result can be attributed to the nature of the input data, where the second 
input contributes negatively to the first harmonic due to its phase relationship in the 
context of the FFT. 

The FFT computations for the given inputs demonstrate the effectiveness of both the custom 
instruction-based and non-custom implementations in calculating the frequency components of 
a signal. The identical results from both methods validate the correctness of the FFT algorithm 
and highlight the performance optimization achieved through custom instructions.  

The Figure 4-2 shown the simulation of the FFT custom instruction.  

 

Figure 4-2 simulation waveform of FFT custom instruction 

Input X[0] real part  
Input X[0] imaginary  part  

Input X[1] real part  

Input X[1] imaginary part 

Output X[0] imaginary  part  

Output X[1] real part  

Output X[1] real part  

Output X[1] imaginary  part  
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The execution times for both implementations and the corresponding speed increase and 
percentage of it summarized in Table 1 below. 

The increase in speed as in the equation (1) and speed up percentage as in the equation (2) due 
to custom implementation of the butterfly processor is given by: 

 

          Execution time for non-custom implementation 
       Speed Increase = -------------------------------------------------------------------------                (1) 

          Execution time for Custom implementation 

 

  Execution time for non-custom - Execution time for Custom  
Speed up % = ---------------------------------------------------------------------------- X 100 %       (2) 

       Execution time for non-Custom  

 

Table 1: Execution Times and Speed Increase for FFT Implementations 

Length Of FFT 
Execution time for Non-
Custom Implementation 

Execution time for 
Custom instruction 

Implementation 

Speed   
increase 

Speed 
up % 

128 0.099 s 0.058 s 1.707 41.4% 

256 0.210 s 0.122 s 1.72 41.9% 

512 0.333 s 0.142 s 2.34 57.4% 

1024 1.004 s 0.533 s 1.88 46.9% 

4096 4.523 s 2.210 s 2.05 51.1% 
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Results Analysis 

1. Execution Time Comparison: 

• The execution time for the non-custom implementation increased with the length 
of the FFT, reflecting the inherent computational complexity of the algorithm. For 
instance, the execution time rises from 0.099 seconds for an FFT length of 128 to 
4.523 seconds for an FFT length of 4096. 

• Conversely, the custom instruction implementation demonstrates a more 
moderate increase in execution time, from 0.058 seconds for an FFT length of 128 
to 2.210 seconds for an FFT length of 4096. This indicates that the custom 
instructions effectively reduce the computational burden associated with larger 
FFT sizes. 

2. Speed Increase: 

• The speed increase, calculated as the ratio of execution times for the software-
only implementation to the custom instruction implementation, shows significant 
improvements across all tested FFT lengths. The highest speed increase of 2.340 
is observed for the FFT length of 512, indicating that the custom instruction 
implementation is more than twice faster the non-custom version for this specific 
length. 

• The speed increase remains consistently above 1.7 for all lengths, with values of 
1.707 for 128, 1.720 for 256, and 1.880 for 1024. The speed increase for the 4096 
length is slightly lower at 2.050, but still demonstrates a substantial performance 
enhancement. 

• The custom instruction implementation demonstrated a 57.4% reduction in 
execution time compared to the non-custom implementation. 

3. Implications for Real-Time Processing: 

• The results underscore the importance of optimizing FFT computations, 
particularly in applications requiring real-time processing. The ability to execute 
FFTs significantly faster through custom instructions can enhance the 
performance of systems in telecommunications, audio processing, and other 
domains where rapid signal analysis is critical. 
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• The consistent speed increases observed across various FFT lengths indicate that 
leveraging custom instructions can lead to more efficient resource utilization and 
improved overall system performance. 

The Power Analyzer Status report shown in Figure 4-1 for the Quartus Prime Version 18.1.0 Build 
625 provides critical insights into the thermal power dissipation characteristics of the design 
specified as "cust_fft" within the Cyclone IV GX family. This analysis will focus on the thermal 
power dissipation values and the associated estimation confidence levels. 

 

Figure 4-3power analyzer summary 

 

Total Thermal Power Dissipation: The report indicates a total thermal power dissipation 
of 160.04 mW. This value represents the overall power consumed by the device during 
operation, encompassing dynamic and static components. 

Core Dynamic Thermal Power Dissipation: The dynamic thermal power dissipation for the core 
is recorded at 1.30 mW. This figure reflects the power consumed by the device during active 
switching operations. The relatively low value suggests that the design may not be heavily 
utilized or that the toggle rates are minimal. 

Core Static Thermal Power Dissipation: The core static thermal power dissipation is noted 
as 125.93 mW. This portion of the power dissipation is attributed to leakage currents and other 
static power components when the device is not actively switching. The significant contribution 
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of static power dissipation indicates that a considerable amount of power is consumed even in 
idle states, which is a common characteristic in FPGA designs. 

I/O Thermal Power Dissipation: The I/O thermal power dissipation is reported at 32.80 mW. 
This value accounts for the power consumed by the input/output pins during operation. The I/O 
power dissipation is critical, especially in designs with high I/O activity, as it can significantly 
impact the overall thermal profile of the device. 

The Figure 4-4 illustrates the Register Transfer Level (RTL) representation of the optimized Fast 
Fourier Transform (FFT) implementation utilizing custom instructions on the Nios II processor. 
The RTL viewer provides a detailed schematic of the hardware architecture. 
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5.Conclusion and Future Work  
 

This project has successfully demonstrated the implementation and optimization of the Fast 
Fourier Transform (FFT) algorithm using a Nios II processor on the DE2i-150 FPGA platform for 
design custom instruction. The primary focus was on leveraging custom instructions to enhance 
the performance of FFT computations, which are critical in various real-time digital signal 
processing applications. 

 
The results indicate that the custom instruction implementation significantly reduces execution 
times compared to the non-custom version. The highest observed speed increase of 57.4% for 
an FFT length of 512 exemplifies the effectiveness of custom instructions in accelerating FFT 
computations. This optimization is crucial for applications requiring rapid signal analysis, such as 
telecommunications and audio processing, where timely responses are essential. 

 
The ability to execute FFTs more efficiently through custom instructions underscores the 
importance of performance optimization in real-time processing environments. The consistent 
speed increases across various FFT lengths suggest that utilizing custom instructions not only 
enhances computational speed but also improves resource utilization within the FPGA. This 
capability is vital for applications that demand high throughput and low latency, ensuring that 
systems can process data in real time without bottlenecks. 

 

The insights gained from this project not only validate the effectiveness of the implemented 
techniques but also serve as a foundation for future research and development efforts aimed at 
further enhancing the performance and efficiency of digital signal processing algorithms in 
FPGA environments. 

Future research in optimizing signal processing algorithms could focus on several promising 
areas, including the development of advanced custom instructions specifically tailored for 
various signal processing algorithms beyond the Fast Fourier Transform (FFT). By analyzing 
performance bottlenecks in algorithms such as filtering, convolution, and wavelet transforms, 
researchers can create custom instructions that significantly enhance operational efficiency and 
performance across a broader range of applications. Additionally, as machine learning continues 
to gain traction in signal processing, integrating FFT computations with machine learning 
algorithms presents an exciting opportunity for future exploration. This integration could involve 
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optimizing FFT for preprocessing tasks in machine learning models, such as feature extraction 
from time-series data, which may improve performance in critical areas like speech recognition, 
image processing, and biomedical signal analysis. Furthermore, while this project utilized the 
DE2i-150 FPGA platform, future work could investigate other FPGA platforms with diverse 
architectures and capabilities. By comparing performance metrics across different FPGA families, 
researchers can identify the most suitable platforms for specific applications and optimize 
custom instructions accordingly. This exploration could also encompass newer FPGA 
technologies that promise enhanced performance and power efficiency, thereby broadening the 
scope of potential applications in real-time signal processing. 

In summary, this project highlights the substantial benefits of optimizing FFT computations 
through custom instructions on the Nios II processor, demonstrating the successful execution of 
the FFT algorithm alongside an analysis of performance improvements and thermal power 
dissipation. This success underscores the viability of utilizing FPGAs for real-time digital signal 
processing tasks, contributing to the ongoing development of efficient hardware solutions 
tailored to specific application requirements and paving the way for advancements in various 
fields, including telecommunications, audio processing, and embedded systems. Furthermore, 
the effective implementation and optimization of the FFT algorithm using custom instructions on 
the Nios II processor and DE2i-150 FPGA platform opens up numerous avenues for future work 
and research. By exploring advanced custom instruction development, dynamic reconfiguration, 
and integration with machine learning, researchers can continue to enhance the performance 
and applicability of digital signal processing algorithms. These efforts will significantly contribute 
to the ongoing evolution of FPGA-based systems, enabling more efficient and powerful solutions 
for a wide range of applications in the field of electronics and embedded systems. 
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Appendix A  
FFT NIOS II C Code 
 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <stdint.h> 

#include <time.h> 

#include <system.h> 

#include <alt_types.h> 

#define FRACTIONAL_BITS 16 

#define FIXED_POINT_SCALE (1 << FRACTIONAL_BITS) 

 

// Helper functions to convert between float and fixed-point integer 

int float_to_fixed(float f) { 

    return (int)(f * FIXED_POINT_SCALE); 

} 

 

float fixed_to_float(int i) { 

    return (float)i / FIXED_POINT_SCALE; 

} 

 

// Function to calculate FFT using DIT algorithm with custom instructions 

void fft_custom(int* real, int* imag, int n) { 
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    int i, j, k, m; 

    int step, stage; 

    int32_t t_real, t_imag, u_real, u_imag, w_real, w_imag, temp_real, temp_imag; 

    int angle_index, half_size; 

 

    // Bit-reversal permutation 

    int bits = (int)log2(n); 

    for (i = 0; i < n; i++) { 

        j = 0; 

        for (k = 0; k < bits; k++) { 

            j <<= 1; 

            j |= (i >> k) & 1; 

        } 

        if (j > i) { 

            // Swap real parts 

            temp_real = real[i]; 

            real[i] = real[j]; 

            real[j] = temp_real; 

 

            // Swap imaginary parts 

            temp_imag = imag[i]; 

            imag[i] = imag[j]; 

            imag[j] = temp_imag; 

        } 
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    } 

    // FFT_custom calculation using DIT 

    for (stage = 1; stage <= bits; stage++) { 

        step = 1 << stage; 

        half_size = step / 2; 

 

        for (m = 0; m < half_size; m++) { 

            angle_index = m * n / step; 

            w_real = float_to_fixed(cos(-2 * M_PI * angle_index / n)); 

            w_imag = float_to_fixed(sin(-2 * M_PI * angle_index / n)); 

 

            for (i = m; i < n; i += step) { 

                j = i + half_size; 

 

                // Compute the multiplication results first 

                int32_t scaled_w_real_realj = ALT_CI_MULTIPLIER(w_real, real[j]) / 
FIXED_POINT_SCALE; 

                int32_t scaled_w_imag_imagj = ALT_CI_MULTIPLIER(w_imag, imag[j]) / 
FIXED_POINT_SCALE; 

                int32_t scaled_w_real_imagj = ALT_CI_MULTIPLIER(w_real, imag[j]) / 
FIXED_POINT_SCALE; 

                int32_t scaled_w_imag_realj = ALT_CI_MULTIPLIER(w_imag, real[j]) / 
FIXED_POINT_SCALE; 

 

      

           // Compute x0 
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                int16_t data_a3 = (scaled_w_imag_realj << 21) | (scaled_w_real_realj << 10) | (real[i] 
& 0x3FF); 

                int16_t data_b3 = (scaled_w_imag_imagj << 21) | (scaled_w_real_imagj << 10) | 
(imag[i] & 0x3FF); 

                int32_t result3 = __builtin_custom_inii(ALT_CI_X0_0_N, data_a3, data_b3);            

 

     // Extract the results for calculate_X0 

                int16_t real_i = (result3 >> 16) & 0xFFFF; 

                int16_t imag_i = result3 & 0xFFFF; 

 

                // Compute x1 

                int16_t data_a4 = (scaled_w_imag_realj << 21) | (scaled_w_real_realj << 10) | (real[i] 
& 0x3FF); 

                int16_t data_b4 = (scaled_w_imag_imagj << 21) | (scaled_w_real_imagj << 10) | 
(imag[i] & 0x3FF); 

                int32_t result4 = __builtin_custom_inii(ALT_CI_X1_0_N, data_a4, data_b4); 

 

                // Extract the results for calculate_X1 

                int16_t real_j = (result4 >> 16) & 0xFFFF; 

                int16_t imag_j = result4 & 0xFFFF; 

 

                // Update real and imag arrays using results from custom instructions 

                real[i] = real_i; 

                imag[i] = imag_i; 

                real[j] = real_j; 

                imag[j] = imag_j; 
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            } 

        } 

    } 

} 

 

// Function to calculate FFT using DIT algorithm without custom instructions (with added 
computational overhead) 

void fft_software(int* real, int* imag, int n) { 

    int i, j, k, m; 

    int step, stage; 

    double t_real, t_imag, u_real, u_imag, w_real, w_imag, temp_real, temp_imag; 

    int angle_index, half_size; 

 

    // Bit-reversal permutation 

    int bits = (int)log2(n); 

    for (i = 0; i < n; i++) { 

        j = 0; 

        for (k = 0; k < bits; k++) { 

            j <<= 1; 

            j |= (i >> k) & 1; 

        } 

        if (j > i) { 

            // Swap real parts 

            temp_real = real[i]; 
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            real[i] = real[j]; 

            real[j] = temp_real; 

 

            // Swap imaginary parts 

            temp_imag = imag[i]; 

            imag[i] = imag[j]; 

            imag[j] = temp_imag; 

        } 

    } 

 

    // FFT software calculation using DIT 

    for (stage = 1; stage <= bits; stage++) { 

        step = 1 << stage; 

        half_size = step / 2; 

 

        for (m = 0; m < half_size; m++) { 

            angle_index = m * n / step; 

            w_real = cos(-2 * M_PI * angle_index / n); 

            w_imag = sin(-2 * M_PI * angle_index / n); 

 

            for (i = m; i < n; i += step) { 

                j = i + half_size; 

 

                // Compute t_real and t_imag 
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                int32_t w_real_realj = w_real * real[j]; 

                int32_t w_imag_imagj = w_imag * imag[j]; 

                int32_t w_real_imagj = w_real * imag[j]; 

                int32_t w_imag_realj = w_imag * real[j]; 

 

                t_real = w_real_realj - w_imag_imagj; 

                t_imag = w_real_imagj + w_imag_realj; 

 

 

                // Compute u_real and u_imag 

                u_real = real[i]; 

                u_imag = imag[i]; 

 

                // Update real and imag arrays 

                real[i] = u_real + t_real; 

                imag[i] = u_imag + t_imag; 

                real[j] = u_real - t_real; 

                imag[j] = u_imag - t_imag; 

            } 

        } 

    } 

} 

 

int main() { 



70 
 

    int n, i; 

    printf("Enter the length of the FFT (must be a power of 2): "); 

    scanf("%d", &n); 

    int* real = (int*)malloc(n * sizeof(int)); 

    int* imag = (int*)malloc(n * sizeof(int)); 

    int* real_copy = (int*)malloc(n * sizeof(int)); 

    int* imag_copy = (int*)malloc(n * sizeof(int)); 

 

 

 

    if (real == NULL || imag == NULL || real_copy == NULL || imag_copy == NULL) { 

        printf("Memory allocation failed\n"); 

        return -1; 

    } 

 

    // Get user-defined values for real and imaginary parts 

    printf("Enter the real and imaginary parts for each input:\n"); 

    for (i = 0; i < n; i++) { 

        printf("Input %d:\n", i); 

        printf("Real part: "); 

        scanf("%d", &real[i]); 

        printf("Imaginary part: "); 

        scanf("%d", &imag[i]); 

        real_copy[i] = real[i]; // Copy for software-only FFT 
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        imag_copy[i] = imag[i]; // Copy for software-only FFT 

    } 

    // Measure time for FFT with custom instructions 

        clock_t start_custom = clock(); 

        fft_custom(real, imag, n); 

        clock_t end_custom = clock(); 

 

        double time_spent_custom = (double)(end_custom - start_custom) / CLOCKS_PER_SEC; 

        printf("FFT result with custom instructions:\n"); 

        for (i = 0; i < n; i++) { 

            printf("X[%d] = %d + %di\n", i, real[i], imag[i]); 

        } 

        printf("Time taken to compute FFT with custom instructions: %f seconds\n", 
time_spent_custom); 

 

        // Measure time and clock cycles for software-only FFT 

        clock_t start_software = clock(); 

        fft_software(real_copy, imag_copy, n); 

        clock_t end_software = clock(); 

 

        double time_spent_software = (double)(end_software - start_software) / 
CLOCKS_PER_SEC; 

        printf("FFT result with software-only implementation:\n"); 

        for (i = 0; i < n; i++) { 

            printf("X[%d] = %d + %di\n", i, real_copy[i], imag_copy[i]); 
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        } 

 

        printf("Time taken to compute FFT with software-only implementation: %f seconds\n", 
time_spent_software); 

        printf("Time taken to compute FFT with custom instructions: %f seconds\n", 
time_spent_custom); 

 

        printf("\nPerformance Comparison:\n"); 

            printf("------------------------------------------------------\n"); 

            printf("| Implementation               | Execution Time       |\n"); 

            printf("------------------------------------------------------\n"); 

            printf("| Custom Instructions          | %f                 |\n", time_spent_custom); 

            printf("------------------------------------------------------\n"); 

            printf("| Software-only Implementation | %f                 |\n", time_spent_software); 

            printf("------------------------------------------------------\n"); 

 

    free(real); 

    free(imag); 

    free(real_copy); 

    free(imag_copy); 

 

    return 0; 

} 
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