Sobolev Spaces in Metric Spaces
DOI:
https://doi.org/10.55276/ljs.v24i1.96الكلمات المفتاحية:
Newtonian functions; doubling measure; metric space; nonlinear; Sobelev spaces; Poincaré inequality.الملخص
We study Sobolev type spaces (called Newtonian spaces) in metric measure spaces equipped with a doubling measure and supporting a p −Poincaré inequality. The Sobolev spaces are defined using the minimal upper gradient which is a substitute of the modulus of the usual gradient. We show that they are the right extension of the usual Sobolev spaces in Rn . In particular Newtonian functions are quasicontinuous and that they are absolutely continues on almost every curve. Moreover, Newtonian functions are continuous on the complement of small sets.
التنزيلات
منشور
2021-04-27
كيفية الاقتباس
Farnana, Z. (2021) "Sobolev Spaces in Metric Spaces", المجلة الليبية للعلوم, 24(1), ص 79–88. doi: 10.55276/ljs.v24i1.96.