Kinetic Isotherm and Thermodynamic Modelling of Methylene Blue Adsorption Using Green Tea-Based Biosorbents
Keywords:
Mehtylene Blue, Biosorption, Isotherm, Kinetic, ThermodynamicAbstract
The current research investigated how effectively two biosorbent materials made from green tea; dry powdered material (DPM) and charcoal powdered material (CPM), removed the color methylene blue from aqueous solutions. Various experimental parameters were examined, including the pH, temperature, initial dye concentration of the dye solution, amount of adsorbent, and contact time. The results demonstrated that the maximum adsorption effectiveness for both DPM and CPM occurred at pH 10. The adsorption equilibrium was rapidly attained for DPM and CPM, taking 10 and 15 minutes, respectively. The adsorption data was fitted with four isotherm models: Dubinin-Kaganer-Radushkevich (D-R) model, Freundlich, Temkin, and Langmuir models. The best correlation was found in Langmuir model (R2 = 0.996 & 0.991). Maximum adsorption capacity values of 15.58 mg/g for DPM and 18.66 mg/g for CPM were found using the Langmuir equation. The adsorption kinetics followed a pseudo-second-order model. The results showed that the thermodynamic parameters for DPM were 24.40 kJ/mol, 92.93 J/mol.K, and -3.31 kJ/mol, and for CPM they were 4.07 kJ/mol, 13.34 J/mol.K, and 0.20 kJ/mol. Gibbs free energy (ΔGo), entropy (ΔSo), and enthalpy (ΔHo) were among these numbers. These findings imply that the adsorption is a spontaneous, endothermic process. The study demonstrates the efficient way in which dyes from wastewater can be eliminated by using biosorbents made from green tea.
References
De Castro, M. L. F. A., Abad, M. L. B., Sumalinog, D. A. G., Abarca, R. R. M., Paoprasert, P., & de Luna, M. D. G. (2018). Adsorption of Methylene Blue dye and Cu(II) ions on EDTA-modified bentonite: Isotherm, kinetic and thermodynamic studies. Sustain. Environ. Res., 28(4), 197-205. https://doi.org/10.1016/j.serj.2018.04.001
Hu, Q. H., Qiao, S. Z., Haghseresht, F., Wilson, M. A., & Lu, G. Q. (2006). Adsorption study for removal of Basic Red dye using bentonite. Ind. Eng. Chem. Res., 45(2), 733-738. https://doi.org/10.1021/ie050889y
Elsherif, K. M., & Yaghi, M. M. (2017). Membrane potential studies of parchment supported silver oxalate membrane. J. Mater. Environ. Sci., 8(1), 356-363.
El-Hashani, A., Elsherif, K. M., Edbey, K., Alfaqih, F., Alomammy, M., & Alomammy, S. (2018). Biosorption of Eriochrome Black T (EBT) onto waste tea powder: Equilibrium and kinetic studies. To Chem., 1(3), 263-275.
Alkherraz, A. M., Ali, A. K., El-Dali, A., & Elsherif, K. M. (2019). Biosorption study of Zn(II), Cu(II), Pb(II), and Cd(II) ions by palm leaves activated carbon. To Chem., 4, 8-17.
Elsherif, K. M., Saad, R. A. A., Ewlad-Ahmed, A. M., Treban, A. A., & Iqneebir, A. M. (2024). Adsorption of Cd(II) onto olive stones powder biosorbent: Isotherms and kinetic studies. Adv. J. Chem. Sect. A, 7(1), 59-74. https://doi.org/10.48309/ajca.2024.415865.1415
Haleem, A., Shafiq, A., Chen, S.-Q., & Nazar, M. A. (2023). Comprehensive review on adsorption, photocatalytic, and chemical degradation of dyes and nitro-compounds over different kinds of porous and composite materials. Molecules, 28, 1081. https://doi.org/10.3390/molecules28031081
El-Bery, H. M., Saleh, M., El-Gendy, R. A., Saleh, M. R., & Thabet, S. M. (2022). High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes. Sci. Rep., 12, 5499. https://doi.org/10.1038/s41598-022-09475-4
Elsherif, K. M., El-Hashani, A., El-Dali, A., & El-Kailany, R. (2014). Bi-ionic potential studies for thallium chromate parchment-supported membrane. Int. J. Res. Pharm. Chem., 4(2), 267-273.
Nasrullah, A., Bhat, A. H., Naeem, A., Isa, M. H., & Danish, M. (2018). High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. Int. J. Biol. Macromol., 107, 1792-1799. https://doi.org/10.1016/j.ijbiomac.2017.10.045
Elsherif, K. M., & Yaghi, M. M. (2017). Studies with model membrane: The effect of temperature on membrane potential. Mor. J. Chem., 5(1), 131-138. https://doi.org/10.48317/IMIST.PRSM/morjchem-v5i1.6324
Mohamed, F., Shaban, M., Zaki, S. K., Abd-Elsamie, M. S., Sayed, R., Zayed, M., Khalid, N., Saad, S., Omar, S., Ahmed, A. M., Gerges, A., Abd El-Mageed, H. R., & Soliman, N. K. (2022). Activated carbon derived from sugarcane and modified with natural zeolite for efficient adsorption of methylene blue dye: Experimentally and theoretically approaches. Sci. Rep., 12, 18031. https://doi.org/10.1038/s41598-022-22421-8
Elsherif, K. M., El-Hashani, A., El-Dali, A., & Saad, M. (2014). Ion-permeation rate of (1:1) electrolytes across parchment-supported silver chloride membrane. Int. J. Chem. Pharm. Sci., 2(6), 890-897.
Elsherif, K. M., El-Hashani, A., El-Dali, A., & Musa, M. (2014). Ion selectivity across parchment-supported silver chloride membrane in contact with multi-valent electrolytes. Int. J. Anal. Bioanal. Chem., 4(2), 58-62.
Bhatt, P., Joshi, S., Urper Bayram, G. M., Khati, P., & Simsek, H. (2023). Developments and application of chitosan-based adsorbents for wastewater treatments. Environ. Res., 226, 115530. https://doi.org/10.1016/j.envres.2023.115530
Elsherif, K. M., El-Hashani, A., & El-Dali, A. (2013). Potentiometric determination of fixed charge density and permselectivity for thallium chromate membrane. Ann. Chem. Res., 1(3), 15-25.
Kausar, A., Tul Zohra, S., Ijaz, S., Iqbal, M., Iqbal, J., Bibi, I., Nouren, S., El Messaoudi, N., & Nazir, A. (2023). Cellulose-based materials and their adsorptive removal efficiency for dyes: A review. Int. J. Biol. Macromol., 224, 1337-1355. https://doi.org/10.1016/j.ijbiomac.2022.10.220
Alkherraz, A. M., Ali, A. K., & Elsherif, K. M. (2020). Removal of Pb(II), Zn(II), Cu(II) and Cd(II) from aqueous solutions by adsorption onto olive branches activated carbon: Equilibrium and thermodynamic studies. Chem. Int., 6(1), 11-20. https://doi.org/10.5281/zenodo.2579465
Elsherif, K. M., El-Dali, A., Alkarewi, A. A., Ewlad-Ahmed, A. M., & Treban, A. (2021). Adsorption of crystal violet dye onto olive leaves powder: Equilibrium and kinetic studies. Chem. Int., 7(2), 79-89. https://doi.org/10.5281/zenodo.4441851
Hashmi, Z., Jatoi, A. S., Nadeem, S., Anjum, A., Imam, S. M., & Jangda, H. (2024). Comparative analysis of conventional to biomass-derived adsorbent for wastewater treatment: A review. Biomass Conv. Bioref., 14, 45–76. https://doi.org/10.1007/s13399-022-02443-y
Elsherif, K. M., El-Hashani, A., & Haider, I. (2018). Biosorption of Fe(III) onto coffee and tea powder: Equilibrium and kinetic study. Asian J. Green Chem., 2, 380-394. https://doi.org/10.22034/ajgc.2018.65163
Alkherraz, A., Ali, A., & Elsherif, K. (2020). Equilibrium and thermodynamic studies of Pb(II), Zn(II), Cu(II) and Cd(II) adsorption onto mesembryanthemum activated carbon. Journal of Medicinal and Chemical Sciences, 3(1), 1-10. https://doi.org/10.26655/JMCHEMSCI.2020.1.1
Kuang, Y., Zhang, X., & Zhou, S. (2020). Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water, 12, 587. https://doi.org/10.3390/w12020587
Elsherif, K. M., Ewlad-Ahmed, A. M., & Treban, A. (2017). Removal of Fe(III), Cu(II), and Co(II) from aqueous solutions by orange peels powder: Equilibrium study. World J. Biochem. Mol. Biol., 2(6), 46-51.
Xiang, Y., Gao, M., Shen, T., Cao, G., Zhao, B., & Guo, S. (2019). Comparative study of three novel organo-clays modified with imidazolium-based gemini surfactant on adsorption for bromophenol blue. J. Mol. Liq., 286, 110928. https://doi.org/10.1016/j.molliq.2019.110928
Elsherif, K. M., Ewlad-Ahmed, A. M. S., & Treban, A. A. S. (2017). Biosorption studies of Fe(III), Cu(II), and Co(II) from aqueous solutions by olive leaves powder. Appl. J. Environ. Eng. Sci., 3(4), 341-352. https://doi.org/10.48422/IMIST.PRSM/ajees-v3i4.9806
Fan, S., Wang, Y., Wang, Z., Tang, J., & Li, X. (2017). Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. J. Environ. Chem. Eng., 5, 601-611. https://doi.org/10.1016/j.jece.2016.12.019
Elsherif, K. M., El-Hashani, A., & El-Dali, A. (2013). Effect of temperature on membrane potential and evaluation of thermodynamic parameters of parchment supported silver thiosulphate. Der Chem. Sin., 4(6), 13-21.
Wang, G., Wang, S., Sun, Z., Zheng, S., & Xi, Y. (2017). Structures of nonionic surfactant modified montmorillonites and their enhanced adsorption capacities towards a cationic organic dye. Appl. Clay Sci., 148, 1-10. https://doi.org/10.1016/j.clay.2017.08.001
Elsherif, K. M., Haider, I., & El-Hashani, A. (2019). Adsorption of Co(II) ions from aqueous solution onto tea and coffee powder: Equilibrium and kinetic studies. J. Fundam. Appl. Sci., 11(1), 65-81
Wang, W., Huang, G., An, C., Zhao, S., Chen, X., & Zhang, P. (2018). Adsorption of anionic azo dyes from aqueous solution on cationic gemini surfactant-modified flax shives: Synchrotron infrared, optimization and modeling studies. J. Clean. Prod., 172, 1986-1997. https://doi.org/10.1016/j.jclepro.2017.11.227
Elsherif, K. M., El-Dali, A., Ewlad-Ahmed, A. M., Treban, A. A., Alqadhi, H., & Alkarewi, S. (2022). Kinetics and isotherms studies of safranin adsorption onto two surfaces prepared from orange peels. Mor. J. Chem., 10(4), 639-651. https://doi.org/10.48317/IMIST.PRSM/morjchem-v11i1.32137
Hailu, S. L., Nair, B. U., Mesfin, R. A., Diaz, I., & Tessema, M. (2017). Preparation and characterization of cationic surfactant modified zeolite adsorbent material for adsorption of organic and inorganic industrial pollutants. J. Environ. Chem. Eng., 5, 3319-3329. https://doi.org/10.1016/j.jece.2017.06.039
Elsherif, K. M., & Yaghi, M. M. (2016). Studies with model membrane: Determination of fixed charge density of silver sulfite membrane. Am. J. Polym. Sci. Technol., 2(2), 28-33.
Leng, L., Yuan, X., Zeng, G., Shao, J., Chen, X., Wu, Z., Wang, H., & Peng, X. (2015). Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption. Fuel, 155, 77-85. https://doi.org/10.1016/j.fuel.2015.04.019
Elsherif, K. M., El-Hashani, A., & El-Dali, A. (2013). Potentiometric determination of fixed charge density and permselectivity for silver thiosulphate membrane. J. Appl. Chem., 2(6), 1543-1551.
Mubarik, S., Saeed, A., Athar, M. M., & Iqbal, M. (2016). Characterization and mechanism of the adsorptive removal of 2,4,6-trichlorophenol by biochar prepared from sugarcane bagasse. J. Ind. Eng. Chem., 33, 115-121. https://doi.org/10.1016/j.jiec.2015.09.029
Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab. J. Chem., 10, S1445-S1451. https://doi.org/10.1016/j.arabjc.201
Elsherif, K. M., El-Hashani, A., & Haider, I., (2018), Equilibrium and kinetic studies of Cu (II) biosorption onto waste tea and coffee powder (WTCP). Iran. J. Anal. Chem., 5(2), 31-38. https://doi.org/20.1001.1.23832207.2018.5.2.5.4
Alkherraz, A. M., Elsherif, K. M., El-Dali, A., Blayblo, N. A., & Sasi, M., (2022), Thermodynamic, equilibrium, and kinetic studies of safranin adsorption onto Carpobrotus edulis. Asian J. Nanosci. Mater., 5(2), 118-131. https://doi.org/10.26655/AJNANOMAT.2022.2.4
Alkherraz, A. M., Elsherif, K. M., Madiry, A. H., & Sasi, M. S., (2024), Evaluating the efficiency of red tea leaves residues in adsorption of methylene blue dye from liquid wastes: isotherms, kinetics, and thermodynamics studies. Arab. J. Sci. Res., 5(1), 2. https://doi.org/10.5339/ajsr.2024.2
Derakhshan, Z., Baghapour, M. A., Ranjbar, M., & Faramarzian, M., (2013), Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: Kinetics and equilibrium studies. Health Scope, 2(3), 136-144. https://doi.org/10.17795/jhealthscope-12492
Turp, S. M., Turp, G. A., Ekinci, N., & Özdemir, S., (2020), Enhanced adsorption of methylene blue from textile wastewater by using natural and artificial zeolite. Water Sci. Technol., 82(3), https://doi.org/10.2166/wst.2020.358
Cheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J., & Maina, E. N., (2019), Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Sci. Afr., 5, e00116. https://doi.org/10.1016/j.sciaf.2019.e00116
Deng, H., Yang, L., Tao, G., & Dai, J., (2009), Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation--application in methylene blue adsorption from aqueous solution. J Hazard Mater., 166(2-3), 1514–1521. https://doi.org/10.1016/j.jhazmat.2008.12.080
Ghoohestani, E., Samari, F., Homaei, A., & Yosuefinejad, S., (2024), A facile strategy for preparation of Fe3O4 magnetic nanoparticles using Cordia myxa leaf extract and investigating its adsorption activity in dye removal. Sci Rep., 14(1), 84. https://doi.org/10.1038/s41598-023-50550-1
Sahu, S., Pahi, S., Tripathy, S., Singha, S. K., Behera, A., Sahu, U. K., & Patel, R. K., (2020), Adsorption of methylene blue on chemically modified lychee seed biochar: Dynamic, equilibrium, and thermodynamic study. J. Mol. Liq., 315, 113743. https://doi.org/10.1016/j.molliq.2020.113743
Sen, T. K., Afroze, S., & Ang, H. M., (2011), Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air Soil Pollut., 218, 499–515. https://doi.org/10.1007/s11270-010-0663-y
Hasfalina, C. B. M., Akinbile, C. O., & Jun, C. X., (2015), Coconut husk adsorbent for the removal of methylene blue dye from wastewater. BioRes., 10(2), 2859-2872. https://doi.org/10.15376/biores.10.2.2859-2872
Mouni, L., Belkhiri, L., Bollinger, J. C., Bouzaza, A., Assadi, A., Tirri, A., Dahmoune, F., Madani, K., & Reminie, H., (2018), Removal of methylene blue from aqueous solutions by adsorption on kaolin: Kinetic and equilibrium studies. Appl. Clay Sci., 153, 38–45. https://doi.org/10.1016/j.clay.2017.11.034
Iqbal, J., Watto, F.H., Watto, M.H.S., Malik, R., Tirmizi, S.A., Imran, M., & Ghangro, A.B., (2011), Adsorption of acid yellow dye on flakes of chitosan prepared from fishery waste. Arab. J. Chem., 4, 389–395. https://doi.org/10.1016/j.arabjc.2010.07.007
Han, Q., Wang, J., Goodman, B. A., Xie, J., & Liu, Z., (2020), High adsorption of methylene blue by activated carbon prepared from phosphoric acid treated eucalyptus residue. Powder Technol., 366, 239–248. https://doi.org/10.1016/j.powtec.2020.02.013
Gemici, B. T., Ozel, H. U., & Ozel, H. B., (2021), Removal of methylene blue onto forest wastes: Adsorption isotherms, kinetics and thermodynamic analysis. Environ. Technol. Innov., 22, 101501. https://doi.org/10.1016/j.eti.2021.101501
Shahryari, Z., Goharrizi, A. S., & Azadi, M., (2010), Experimental study of methylene blue adsorption from aqueous solutions onto carbon nano tubes. Int. J. Water Resour. Environ. Eng., 2(2), 016-028.
Sah, M.K., Edbey, K., El-Hashani, A., Almshety, S., Mauro, L., Alomar, T.S., AlMasoud, N., & Bhattarai, A., (2022), Exploring the biosorption of methylene blue dye onto agricultural products: A critical review. Separations, 9(256). https://doi.org/10.3390/separations9090256
Ghosh, D., & Bhattacharyya, K.G., (2002), Adsorption of methylene blue on kaolinite. Appl. Clay Sci., 20, 295–300. https://doi.org/10.1016/S0169-1317(01)00081-3