Department of Nuclear Engineering

More ...

About Department of Nuclear Engineering

Facts about Department of Nuclear Engineering

We are proud of what we offer to the world and the community




Academic Staff





Who works at the Department of Nuclear Engineering

Department of Nuclear Engineering has more than 11 academic staff members

staff photo

Dr. Karima Mohamed Ali Elmasri


Some of publications in Department of Nuclear Engineering

Study of Dose Distribution around a PET Facility in a Nuclear Medicine Clinic

Abstract: Modern PET/CT clinics consist of a scanner room housing PET/CT unit and a control area, two or more waiting rooms where patients rest prior to scanning, and a hot lab where doses are prepared. The 511 keV photons from the PET positron emitting isotopes are the source term for the waiting rooms and the hot lab, while both the 511 keV photons and the polyenergtic spectrum of x-rays from the CT unit must be considered in the scanning roomThis study is intended to estimate dose distribution resulting from using a FDG procedure (555 MBq). The dose distribution is evaluated in injection room, waiting room, and scanning room using two methods. The first method is the analytical method whids is based on AAPM report № 108, while in the second method the dose distribution was simulated using the Monte Carlo code EGSXYZnrc .In the Monte Carlo method some parameters such as the optimal number of histories and the cut off energy of the electron are found to have a significant effect on the results. These parameters are tested and those values with less statistical error are adapted for the calculations.A good agreement between the two methods has been achieved. The dose distribution in the uptake room , waitting room and the scanning room appears to be below the annually dose limit and does not exceed 1% at the adjacent areas.
مريومة البهلول القرقني (2009)
Publisher's website

Studying of Naturally Occurring Radioactive Materials (NORM) in Oilfield (A/100) South East of Libya

The huge volume of Naturally Occurring Radioactive Materials (NORM) wastes produced annually by the oil and gas industry in Libya deserves the attention of the national environmental protection authority, radioactive waste management and regulatory bodies. An investigation was carried out to find out the concentration of (NORMs) in evaporation ponds sludge in south eastern oilfield (A/100) of Libya. Twenty soil samples were collected from five evaporation ponds sludge. Activity concentrations of 226Ra, 232Th and 40K in soil generated during oil production operations were determined using a gamma spectroscopy system based on High Purity Germanium (HPGe) detector. Concentrations ranged from 83 to 1000 Bq kg–1 for 226Ra, 59 to 315 Bq kg–1 for 232Th and 109 to 304 Bq kg–1 for 40K. To evaluate the radiological effects, radium equivalent activity and external hazard are calculated. The magnitude of these results demonstrates the need of screening oil residues for their radionuclide content in order to decide about possibility of minimize the environmental impact of NORM and their final disposal. Disposal of NORM waste has to be in accordance with national regulations, environmental policy and international agreements and conventions. The researchers recommend limits for clearance and disposal, based on best international practice. arabic 18 English 82
Usama Elghawi (1-2021)
Publisher's website

Determination of Dose Rates from Natural Radionuclides in Porcelain Dental Materials

There are three main aims that make this study particularly important and interesting to radiometric studies. Firstly, it will provides information on the concentration composition of natural and the associated man-made radioactivity of imported dental porcelain materials to be used by most dental laboratories in Great Jamahiriya. Since these materials do not pass radiation inspection tests before their entry or use and there is a large variety of supply source of these dental materials to be used for all dental works on Libyan patients, anomalies can be identified easily. Secondly, the analysis of selective elemental abundance (U, Th, and K ) and dose rate calculations may be used to calculate effective dose rates to dental laboratory technicians and also to the patient who will be using these specific materials. This research project will provide the first results of such measurements and the corresponding average annual effective dose rates equivalent to the patients using these materials and also to the dental technician and doctors work in the various dental laboratories that make use of these materials in their daily work. A total number of 30 dental powder samples were collected from a number of dental laboratories around Tripoli area will be analyzed. In this research project, the results from this preliminary survey regarding Th, U and K elemental concentrations in a wide variety of dental materials by means of high-resolution X-ray spectrometry will be presented. Further results from these investigations concerning activity concentrations and the associated dose rates, effective dose and the committed dose due to the use of these materials are going to be calculated and compared with other published data elsewhereandrecommendationoftheirusewillbederivedaccordingly. arabic 10 English 74
Karima Mohamed Ali Elmasri, Nouri A. Droughi(9-2010)
Publisher's website

Documents you Need