Assessing the value of soil inorganic carbon for ecosystem services in the contiguous United States based on liming replacement costs

Date

2018-12

Type

Article

Journal title

Land

Author(s)

Garth Groshans
Elena Mikhailova
Christopher Post
Mark Schlautman
Hamdi Zurqani
Lisha Zhang

Abstract

Soil databases are very important for assessing ecosystem services at different administrative levels (e.g., state, region etc.). Soil databases provide information about numerous soil properties, including soil inorganic carbon (SIC), which is a naturally occurring liming material that regulates soil pH and performs other key functions related to all four recognized ecosystem services (e.g., provisioning, regulating, cultural and supporting services). However, the ecosystem services value, or “true value,” of SIC is not recognized in the current land market. In this case, a negative externality arises because SIC with a positive value has zero market price, resulting in the market failure and the inefficient use of land. One potential method to assess the value of SIC is by determining its replacement cost based on the price of commercial limestone that would be required to amend soil. The objective of this study is to assess SIC replacement cost value in the contiguous United States (U.S.) by depth (0–20, 20–100, 100–200 cm) and considering different spatial aggregation levels (i.e., state, region, land resource region (LRR) using the State Soil Geographic (STATSGO) soil database. A replacement cost value of SIC was determined based on an average price of limestone in 2014 ($10.42 per U.S. ton). Within the contiguous U.S., the total replacement cost value of SIC in the upper two meters of soil is between $2.16T (i.e., 2.16 trillion U.S. dollars, where T = trillion = 1012) and $8.97T. States with the highest midpoint total value of SIC were: (1) Texas ($1.84T), (2) New Mexico ($355B, that is, 355 billion U.S. dollars, where B = billion = 109) and (3) Montana ($325B). When normalized by area, the states with the highest midpoint SIC values were: (1) Texas ($2.78 m−2), (2) Utah ($1.72 m−2) and (3) Minnesota ($1.35 m−2). The highest ranked regions for total SIC value were: (1) South Central ($1.95T), (2) West ($1.23T) and (3) Northern Plains ($1.01T), while the highest ranked regions based on area-normalized SIC value were: (1) South Central ($1.80 m−2), (2) Midwest ($0.82 m−2) and (3) West ($0.63 m−2). For land resource regions (LRR), the rankings were: (1) Western Range and Irrigated Region ($1.10T), (2) Central Great Plains Winter Wheat and Range Region ($926B) and (3) Central Feed Grains and Livestock Region ($635B) based on total SIC value, while the LRR rankings based on area-normalized SIC value were: (1) Southwest Plateaus and Plains Range and Cotton Region ($3.33 m−2), (2) Southwestern Prairies Cotton and Forage Region ($2.83 m−2) and (3) Central Great Plains Winter Wheat and Range Region ($1.59 m−2). Most of the SIC is located within the 100–200 cm depth interval with a midpoint replacement cost value of $2.49T and an area-normalized value of $0.34 m−2. Results from this study provide a link between science-based estimates (e.g., soil order) of SIC replacement costs within the administrative boundaries (e.g., state, region etc.). arabic 19 English 114

Publisher's website

View