Aerodynamic design and performance estimation of horizontal-axis wind turbine

تاريخ النشر

2014

نوع المقالة

رسالة ماجستير

عنوان الرسالة

كلية الهندسة - جامغة طرابلس

المؤلفـ(ون)

فرج الأخضر شنشن

ملخص

Abstract

Estimation of wind characteristics is considered as the first essential step to evaluate a wind energy project based on information about all aspects of the implementation and operation of the project. It's therefore necessary to have detailed knowledge of the wind to design a suitable wind turbine for a certain zone and also to estimate its performance accurately. The first step in this thesis is study the wind energy and wind assessment in the selected site (Zuara) based on the available wind data, which are obtained from the representative meteorological station. The second step in this thesis is study is to design a suitable horizontal axis wind turbine. Design (HAWT) to achieve satisfactory levels of performance starts with knowledge of the aerodynamic forces acting on the blades. The blade element momentum theory (BEM) is applied for HAWT blade design and to predict the performance of the rotor. A computer program for HAWT blade design and its performance analysis is belt. The input of this program is: power required from a turbine, number of blades, design wind velocity, design tip-speed ratio and properties of the selected airfoil. While the output are: blade geometry parameters (chord and twist distribution), power, torque and thrust coefficients versus tip-speed ratios. This study indicates that capacity factor on the Zuara site equal 3 and it is seen that possible to designed wind turbine to extracting the power from the wind with satisfactory levels of performance in the selected site