ملخص
نقوم في هذه الدراسة باستعراض لموضوع الكسور التسلسلية وبعض المفاهيم المهمة ذات العلاقة بالموضوع؛ ثم نعرج بعد ذلك إلى موضوع حساب الكسور التسلسلية وإلى بعض أنواع المتسلسلات المستخدمة في كتابة الكسور التسلسلية. بعدئذ نقوم بإيجاد واستخراج الجذور بإستخدام الكسور التسلسلية، حيث نبدأ بالجذر التربيعي فالجذر النوني ومن ثم الكميات على الصورة . نقوم بعد ذلك بحل المعادلات من الدرجة الثانية بإستخدام الكسور التسلسلية. يلي ذلك استعراض بعض التطبيقات على الكسور التسلسلية في الفيزياء والمعادلات وبعض التطبيقات الأخرى. في ختام الرسالة نعطي حسابات عددية ذات علاقة بموضوع الكسور التسلسلية مع إجراء مقارنة بنتائج يتم التوصل اليها بطرق أخرى.
Abstract
Though the subject of continued fractions is old; but it is still important and interesting .Accordingly this work come into light. First. We give same important definitions and concepts; then we proceed various to give variation representations using continued fractions such as Fibonacci series. The computation of roots of various kinds is another subject tackled in this concern and the solution of algebraic equations of the second degree using continued fractions, is also presented and discussed . Other important applications of continued fraction are presented, such as their use in physics, in th solution of Schrodinger equations , and in differential equation , to solve for Hermite , Laguerre and Legendre polynomials . Finally, some computations regarding the extraction of roots of real numbers are performed and compared with exact methods. It is also to be stressed that though the subject of continued fraction is an old one, but it is still vital and of interest as a useful topic of research.