ملخص
في البحث قمنا بدراسة نوع من الهندسة اللاقليدية وتسمى هندسة ريمن أو كما تسمى بالهندسة الناقصة مع تطبيقاتها في عديد المجالات ، و أساس هذه الهندسة عدم وجود توازي بين المستقيمات في السطوح الكروية ،و تقر هذه الهندسة بتقاطع المستقيمات فقط وهو نقد للمسلمة الخامسة بالذات في هندسة اقليديس ففي الفصل الأول وضعنا تمهيدا لعدة موضوعات واجهتنا بحيث غطى إلى حد ما هذه المسلمات و المفاهيم الأخرى من خلال النظريات و النتائج التي قمنا بدراستها و التي تتعامل مع السطح الكروي وهذا يعتبر نموذج مثالي لهندسة ريمن.وفى الفصول الأخيرة قمنا بدراسة المثلث الكروي العام و حل جميع المثلثات الكروية الأخرى التي لها علاقة وطيدة بهندسة ريمن و ذلك بتطبيق قاعدتي نابير وهفرساين.واستخدمنا طرق عديدة لحل المثلث الارضى الذي يعتبر من أهم التطبيقات لهذه الهندسة و غيرها من المثلثات المشهورة.
Abstract
In this study, we studied one of non-Euclidean geometry “Riemannian geometry” with its applications, the basic of Riemannian geometry is the no parallel assumption. We illustrated the difference between Riemannian geometry and Euclid’s geometry by some outcomes and results; we also discussed methods of solution of any spherical triangle. Also, we studied some methods of solving general spherical triangles; we used this methods of solving the terrestrial triangle, which one of the main applications of spherical trigonometry pertains to marine, and air navigation over large areas.