حول تقدير الخطأ في الحلوول العددية للمعادلات التفاضلية العادية الخطية

تاريخ النشر

2014

نوع المقالة

رسالة ماجستير

عنوان الرسالة

كلية العلوم - جامغة طرابلس

المؤلفـ(ون)

عفاف احمد الجطلاوي

ملخص

Abstract

In this thesis, we study different numerical methods used to solve ordinary differential equations of the first and second orders and where related important definitions are given . We will concentrate first on Differential Equations of the first order and the truncation errors which are derived for various methods and those compared with the expected errors , whenever possible . Two applications were given in science of biology and physics which were studied in details . Finally we draw our attention to ordinary differential equations of the second order where we study initial-value problems and boundary-value problems with the application of the wellknown numerical procedures :the shooting method and the finite difference method . The important conclusion we came up with is that the truncation error is always greater than the expected error for all methods used, and this which was expected .