Biofabrication of Silver Nanoparticles Using Teucrium Apollinis Extract: Characterization, Stability, and Their Antibacterial Activities

Date

2023-1

Type

Article

Journal title

Author(s)

Laila Mohamed Abusen

Pages

5454 - 0

Abstract

Medical science has paid a great deal of attention to green synthesis silver nanoparticles (AgNPs) because of their remarkable results with multidrug-resistant bacteria. This study was conducted on the preparation of AgNPs, using the teucrium apollinis extract as a reducing agent and a capping ligand. The AgNP produced was stable in room condition up to 10 weeks. The AgNP was characterized using UV-visible absorption spectroscopy (UV-Vis), attenuated Fourier transform infrared (ATR-FTIR), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The study confirms the ability of teucrium apollinis to produce AgNPs with high stability. The influence of pH was studied over a pH range of (2–12) on the stability of synthesized AgNPs. The best value of pH was 7.2, where AgNP showed a good stability with high antibacterial activity against Pseudomonas aeruginosa. AgNP synthesis is confirmed by a strong peak in the UV-Vis due to surface plasmon resonance (SPR) at 379 nm. Based on TEM findings, monodispersed AgNP has a spherical shape with a small size of 16 ± 1.8 nm. In this study, teucrium apollinis extract was used for the first time, which could be a good environmental method for synthesizing AgNP, which offers a possible alternative to chemical AgNPs.

Publisher's website

View