ملاءمة البيانات العادية غير الكاملة ثنائية المتغير: نهج رقمي

تاريخ النشر

2010-1

نوع المقالة

رسالة ماجستير

عنوان الرسالة

كلية العلوم - جامعة طرابلس

المؤلفـ(ون)

سميرة ميلود رحومة

ملخص

ملـخـص الرسـالـة نظرا للاهميه الكبيرة التى يلعبها التوزيع الطبيعي المتعدد في كثير من التطبيقات في حياتنا اليومية، و في بعض الأحيان تواجهنا بيانات في الواقع العملي تكون غير كاملة لسبب او لآخر مثل عدم الدقة في تسجيل البيانات أو الإهمال والغياب أو الحرائق والتلف وغيرها، جاءت فكرة هدا البحث لتسليط بعض الضوء حول هدا الموضوع . ويهدف هدا البحث الى تقديم أسلوب الأرجحية العظمى لتقدير معالم التوزيع الطبيعي الثنائي وذلك في الحالات التى تكون فيها البيانات ناقصة، ونظرا لعدم تطبيق الطريقة المباشرة للتقدير في مثل هذه الحالات فإننا نلجأ الى بعض الطرق التجريبية والتى تعتمد على قيم إبتدائية إفتراضية للمعالم المجهولة والمراد تقديرها من واقع المعلومات المتاحة، وقد يكون من أهم هذه الطرق العددية طريقة نيوتن رافسون المعروفة والتى تعتمد على مصفوفة المعلومات لفيشر وكذلك طريقة تعظيم القيمه المتوقعه (EM) والتى صاغ ملامحها النهائية العالم ديمبستر وزملاءه في العام 1977، وتتميز هذه الطريقة بالسهولة في الإستخدام والدقة وقلة حساسيتها لإختيار القيم الأولية للمعالم المجهولة وجزء من إهتمام هذه الرسالة يتعلق بتطبيق هاتين الطريقتين على مجموعة من البيانات الطبيعية الثنائية المولدة إصطناعيا عن طريق المحاكاة بالحاسوب وهذه البيانات تعمدنا أن تكون ناقصة، الأمر الذي يمكننا من مقارنة أداء كل طريقة والوقوف على ميزاتها وعيوبها وذلك عند إستخدام نفس البيانات و نفس القيم الأاولية للمعالم، أي تهيئة نفس الظروف للطريقتين مما يجعل المقارنة عادلة بينهما تم في هده الدراسة توليد 10 مجموعات مختلفة من البيانات الطبيعية الثنائية حيث تم إستخدام معالم مختلفة في كل مرة، حيث إستخدمنا قيم مختلفة لمعامل الإرتباط الخطي بين المتغيرين، ولتفادي التكرار والإسهاب إقتصرت النتائج في هذا البحث على ثلاثة قيم لمعامل الارتباط الخطي هي 0، 0.5، 0.9 وفي كل مجموعة من البيانات إعتبرنا أن هناك قيما مفقودة حيث تراوح عددها من واحد الى عشرة قيم وذلك للوقوف على تأثير معامل الارتباط وكذلك عدد القيم المفقودة على عملية التقدير وذلك عند إستخدام الطريقتين في التقديرلكي تسهل عملية المفاضلة بينهما تحت نفس الظروف. وخلصت الدراسة الى أن أسلوب تعظيم القيمة المتوقعة (EM) لها الأفضلية المطلقة على طريقة نيوتن رافسون المعدلة حيث أنها أسهل تطبيقا وأكثر دقة ولا تتأثر بالقيم الأولية بنفس درجة طريقة نيوتن رافسون المعدلة. ومن أهم فوائد هذه الطريقة بالإضافة الى تقدير المعالم المجهولة بأفضل الطرق، إمكانية إسترجاع القيم المفقودة لتكوين بيانات كاملة و التى قد تستخدم فيما بعد لأي تحليل أو إستخدام مباشر أو غير مباشر.