Algebraic Proof of Kalton Representation Theorems

تاريخ النشر

2010

نوع المقالة

رسالة ماجستير

عنوان الرسالة

كلية العلوم - جامغة طرابلس

المؤلفـ(ون)

إيمان إسماعيل النحائسي

ملخص

في هذا البحث ناقشنا بعض المفاهيم ومنها وصلنا إلى مفهوم دالة التمثيل الخطي المحدودة بين جبران بوليان وأخيرا أثبتنا جبريا نظريتا كالتن للتمثيل الخطي المحدود بالأبواب التالية: الباب الأول: قدمنا في هذا الباب بعض التعريفات والقواعد والنتائج الأساسية التي نحتاجها لاحقا. مثل نظرية المجموعات ومجموعة كانتور ومجموعات بوريل. الباب الثاني: ناقشنا في الباب الثاني بعض المفاهيم المتعلقة بالجبر البولي والمؤثر الخطي المحدود بين جبران بوليان. الباب الثالث: أما الباب الثالث فقد ناقشنا فيه المفاهيم المتعلقة بالقياس والقياس المؤشروالمجموعات القابلة للقياس والدوال المقيسة والتكامل بالنسبة للقياس المؤشر وأخيرا عرفنا فضاء . الباب الرابع: قدمنا النتيجة الأساسية لهذا البحث وهي الإثبات جبريا نظريتا كالتن للتمثيل الخطي المحدود.

Abstract

In this thesis, we give an algebraic proof of the Kalton representation theorems. In chapter one, we give some basic standard definitions and some results we need later. In chapter two we discuss the concept of Boolean algebra, and bounded linear operators between two Boolean algebras. In chapter three, we discuss the concepts of measure, signed measure, measurable sets, measurable functions, integration with respect to signed measure; later in this chapter, we define.In the last chapter (4) we give the main result of our thesis which is the proof of KALTON representation theorems.