Abstract
The university of Tripoli encounters today’s mobility challenges such as increased traffic and congestion. This paper presents a real-time density-based traffic light controller system. The system ensures saving time for faculties, students, and employees by reducing congestion within the university campus. Real-time traffic density is detected using an array of display screens and infrared (IR) sensors placed on each four-way intersection. The display screens provide information on road congestion to show the right way to enter or exit the campus. The system continues monitoring the data coming from display screens and IR sensors and provides real-time traffic. in case of emergencies, the system gives the priority to emergency vehicles using radio frequency identification (RFID). In this research work, the basic modules of the proposed real-time density-based traffic light controller system are designed and simulated with Verilog Hardware Description Language (HDL) and implemented on Cyclone IV GX field-programmable gate arrays (FPGA). This design will contribute to the stabilization and optimization of the traffic at the University of Tripoli campus.